Class Solution
-
- All Implemented Interfaces:
public final class Solution
1499 - Max Value of Equation.
Hard
You are given an array
points
containing the coordinates of points on a 2D plane, sorted by the x-values, where <code>pointsi = x<sub>i</sub>, y<sub>i</sub></code> such that <code>x<sub>i</sub>< x<sub>j</sub></code> for all1 <= i < j <= points.length
. You are also given an integerk
.Return the maximum value of the equation <code>y<sub>i</sub> + y<sub>j</sub> + |x<sub>i</sub> - x<sub>j</sub>|</code> where <code>|x<sub>i</sub> - x<sub>j</sub>| <= k</code> and
1 <= i < j <= points.length
.It is guaranteed that there exists at least one pair of points that satisfy the constraint <code>|x<sub>i</sub> - x<sub>j</sub>| <= k</code>.
Example 1:
Input: points = [1,3,2,0,5,10,6,-10], k = 1
Output: 4
Explanation: The first two points satisfy the condition |x<sub>i</sub> - x<sub>j</sub>| <= 1 and if we calculate the equation we get 3 + 0 + |1 - 2| = 4. Third and fourth points also satisfy the condition and give a value of 10 + -10 + |5 - 6| = 1.
No other pairs satisfy the condition, so we return the max of 4 and 1.
Example 2:
Input: points = [0,0,3,0,9,2], k = 3
Output: 3
Explanation: Only the first two points have an absolute difference of 3 or less in the x-values, and give the value of 0 + 0 + |0 - 3| = 3.
Constraints:
<code>2 <= points.length <= 10<sup>5</sup></code>
points[i].length == 2
<code>-10<sup>8</sup><= x<sub>i</sub>, y<sub>i</sub><= 10<sup>8</sup></code>
<code>0 <= k <= 2 * 10<sup>8</sup></code>
<code>x<sub>i</sub>< x<sub>j</sub></code> for all
1 <= i < j <= points.length
<code>x<sub>i</sub></code> form a strictly increasing sequence.
-
-
Constructor Summary
Constructors Constructor Description Solution()
-
Method Summary
Modifier and Type Method Description final Integer
findMaxValueOfEquation(Array<IntArray> points, Integer k)
-
-
Method Detail
-
findMaxValueOfEquation
final Integer findMaxValueOfEquation(Array<IntArray> points, Integer k)
-
-
-
-