Object

dlm.model

Dlm

Related Doc: package model

Permalink

object Dlm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dlm
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class Model(f: ObservationMatrix, g: SystemMatrix) extends Product with Serializable

    Permalink

    Definition of a DLM

  2. case class Parameters(v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable

    Permalink

    Parameters of a DLM

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. implicit def addModel: Semigroup[Model]

    Permalink

    Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend

  5. def angle(period: Int)(dt: TimeIncrement): Double

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]

    Permalink

    Build a block diagonal matrix by combining two matrices of the same size TODO: Test and check this function

  8. def buildSeasonalMatrix(period: Int, harmonics: Int): DenseMatrix[Double]

    Permalink
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Time, p: Parameters): Stream[(Time, Double, Double)]

    Permalink

    Forecast a DLM from a state

  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def outerSumModel(x: Model, y: Model): Model

    Permalink

    Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way

  21. def outerSumParameters(x: Parameters, y: Parameters): Parameters

    Permalink
  22. def polynomial(order: Int): Model

    Permalink

    A polynomial model

  23. def regression(x: Array[DenseVector[Double]]): Model

    Permalink

    A first order regression model with intercept

  24. def rotationMatrix(theta: Double): DenseMatrix[Double]

    Permalink

    Build a 2 x 2 rotation matrix

  25. def seasonal(period: Int, harmonics: Int): Model

    Permalink

    Create a seasonal model with fourier components in the system evolution matrix

    Create a seasonal model with fourier components in the system evolution matrix

    period

    the period of the seasonality

  26. def seasonalG(period: Int, harmonics: Int)(dt: TimeIncrement): DenseMatrix[Double]

    Permalink
  27. def simStep(mod: Model, x: DenseVector[Double], time: Time, p: Parameters): Rand[(Data, DenseVector[Double])]

    Permalink

    Simulate a single step from a DLM

  28. def simulate(times: Iterable[Double], mod: Model, p: Parameters): Iterable[(Data, DenseVector[Double])]

    Permalink

    Simulate from a DLM at the given times

  29. def simulateRegular(startTime: Time, mod: Model, p: Parameters): Process[(Data, DenseVector[Double])]

    Permalink

    Simulate from a DLM

  30. def simulateState(times: Iterable[Double], g: (TimeIncrement) ⇒ DenseMatrix[Double], p: Parameters, init: (Time, DenseVector[Double])): Iterable[(Time, DenseVector[Double])]

    Permalink

    Simulate the state at the given times

  31. def simulateStateRegular(mod: Model, w: DenseMatrix[Double]): Process[(Time, DenseVector[Double])]

    Permalink

    Simulate the latent-state from a DLM model

  32. def stepForecast(mod: Model, time: Time, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Time, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])

    Permalink

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    mod

    a DLM specification

    time

    the current time

    mt

    the mean of the latent state at time t

    ct

    the variance of the latent state at time t

    p

    the parameters of the DLM

  33. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  34. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  35. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped