Object

dlm.model

Dlm

Related Doc: package model

Permalink

object Dlm

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Dlm
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. case class Data(time: Double, observation: DenseVector[Option[Double]]) extends Product with Serializable

    Permalink

    A single observation of a model

  2. case class Model(f: (Double) ⇒ DenseMatrix[Double], g: (Double) ⇒ DenseMatrix[Double]) extends Product with Serializable

    Permalink

    Definition of a DLM

  3. case class Parameters(v: DenseMatrix[Double], w: DenseMatrix[Double], m0: DenseVector[Double], c0: DenseMatrix[Double]) extends Product with Serializable

    Permalink

    Parameters of a DLM

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def angle(period: Int)(dt: Double): Double

    Permalink

    Get the angle of the rotation for the seasonal model

  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def blockDiagonal(a: DenseMatrix[Double], b: DenseMatrix[Double]): DenseMatrix[Double]

    Permalink

    Build a block diagonal matrix by combining two matrices of the same size

  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def composeModels(x: Model, y: Model): Model

    Permalink

    Dynamic Linear Models can be combined in order to model different time dependent phenomena, for instance seasonal with trend

  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def forecast(mod: Model, mt: DenseVector[Double], ct: DenseMatrix[Double], time: Double, p: Parameters): Stream[(Double, Double, Double)]

    Permalink

    Forecast a DLM from a state

    Forecast a DLM from a state

    mod

    a DLM

    mt

    the posterior mean of the state at time t (start of forecast)

    ct

    the posterior variance of the state at time t (start of forecast)

    time

    the starting time of the forecast

    p

    the parameters of the DLM

    returns

    a Stream of forecasts

  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def outerSumModel(x: Model, y: Model): Model

    Permalink

    Similar Dynamic Linear Models can be combined in order to model multiple similar times series in a vectorised way

  20. def outerSumParameters(x: Parameters, y: Parameters): Parameters

    Permalink
  21. def polynomial(order: Int): Model

    Permalink

    A polynomial model

  22. def regression(x: Array[DenseVector[Double]]): Model

    Permalink

    A first order regression model with intercept

  23. def rotationMatrix(theta: Double): DenseMatrix[Double]

    Permalink

    Build a 2 x 2 rotation matrix

  24. def seasonal(period: Int, harmonics: Int): Model

    Permalink

    Create a seasonal model with fourier components in the system evolution matrix

    Create a seasonal model with fourier components in the system evolution matrix

    period

    the period of the seasonality

    harmonics

    the number of harmonics in the seasonal model

    returns

    a seasonal DLM model

  25. def seasonalG(period: Int, harmonics: Int)(dt: Double): DenseMatrix[Double]

    Permalink

    Build the G matrix for the system evolution

  26. def simStep(mod: Model, x: DenseVector[Double], time: Double, p: Parameters, dt: Double): Rand[(Data, DenseVector[Double])]

    Permalink

    Simulate a single step from a DLM, used in simulateRegular

    Simulate a single step from a DLM, used in simulateRegular

    mod

    a DLM model

    x

    a realisation from the latent state at time t-1

    time

    the current time

    p

    the parameters of the DLM model

    dt

    the time increment between successive realisations of the process

  27. def simulate(times: Iterable[Double], mod: Model, p: Parameters): Iterable[(Data, DenseVector[Double])]

    Permalink

    Simulate from a DLM at the given times

  28. def simulateRegular(startTime: Double, mod: Model, p: Parameters, dt: Double): Process[(Data, DenseVector[Double])]

    Permalink

    Simulate from a DLM

  29. def simulateState(times: Iterable[Double], g: (Double) ⇒ DenseMatrix[Double], p: Parameters, init: (Double, DenseVector[Double])): Iterable[(Double, DenseVector[Double])]

    Permalink

    Simulate the state at the given times

  30. def simulateStateRegular(mod: Model, w: DenseMatrix[Double]): Process[(Double, DenseVector[Double])]

    Permalink

    Simulate the latent-state from a DLM model

  31. def stepForecast(mod: Model, time: Double, dt: Double, mt: DenseVector[Double], ct: DenseMatrix[Double], p: Parameters): (Double, DenseVector[Double], DenseMatrix[Double], DenseVector[Double], DenseMatrix[Double])

    Permalink

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    Perform a single forecast step, equivalent to performing the Kalman Filter Without an observation of the process

    mod

    a DLM specification

    time

    the current time

    mt

    the mean of the latent state at time t

    ct

    the variance of the latent state at time t

    p

    the parameters of the DLM

  32. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  33. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped