Trait/Object

com.github.jonnylaw.model

MetropolisHastings

Related Docs: object MetropolisHastings | package model

Permalink

trait MetropolisHastings extends AnyRef

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MetropolisHastings
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract val initialParams: Parameters

    Permalink

    The initial parameters, representing the place the Metropolis hastings algorithm starts

  2. abstract def logLikelihood: (Parameters) ⇒ LogLikelihood

    Permalink

    The likelihood function of the model, typically a pseudo-marginal likelihood estimated using the bootstrap particle filter for the PMMH algorithm

  3. abstract def logTransition(from: Parameters, to: Parameters): LogLikelihood

    Permalink

    Definition of the log-transition, used when calculating the acceptance ratio This is the probability of moving between parameters according to the proposal distribution Note: When using a symmetric proposal distribution (eg.

    Definition of the log-transition, used when calculating the acceptance ratio This is the probability of moving between parameters according to the proposal distribution Note: When using a symmetric proposal distribution (eg. Normal) this cancels in the acceptance ratio

    from

    the previous parameter value

    to

    the proposed parameter value

  4. abstract def proposal: (Parameters) ⇒ Rand[Parameters]

    Permalink

    Proposal density, to propose new parameters for a model

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. def iters: Process[MetropState]

    Permalink

    Use the Breeze Markov Chain to generate a process of MetropState Calling .sample(n) on this will create a single site metropolis hastings, proposing parameters only from the initial supplied parameter values

  13. def itersAkka: Source[MetropState, Any]

    Permalink

    Generates an akka stream of MetropState, containing the current parameters, count of accepted moves and the current pseudo marginal log-likelihood Unfortunately for an unknown reason this isn't working

  14. def itersSeq(n: Int): Seq[MetropState]

    Permalink

    Returns iterations from the MCMC algorithm in a vector using sampleStep, sampleStep

  15. def itersStream: Source[MetropState, Any]

    Permalink

    Use the same step for iterations in a stream

  16. def mhStep: (MetropState) ⇒ MetropState

    Permalink

    Generic metropolis-hastings step, which can be used with the usual acceptance ratio or simplified to the metropolis ratio by specifying the log-transition of the parameters to be zero

  17. def mhStepRand: (MetropState) ⇒ Rand[MetropState]

    Permalink

    A single step of the metropolis hastings algorithm to be used with breeze implementation of Markov Chain.

    A single step of the metropolis hastings algorithm to be used with breeze implementation of Markov Chain. This is a slight alteration to the implementation in breeze, here MetropState holds on to the previous calculated pseudo marginal log-likelihood value so we don't need to run the previous particle filter again each iteration

  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. def paramsAkka: Source[Parameters, Any]

    Permalink

    Return an akka stream of the parameters

  22. def prior: ContinuousDistr[Parameters]

    Permalink

    Prior distribution for the parameters, with default implementation

  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped