Class/Object

com.github.jonnylaw.model

SimulateData

Related Docs: object SimulateData | package model

Permalink

case class SimulateData(model: Model) extends DataService[NotUsed] with Product with Serializable

Linear Supertypes
Serializable, Serializable, Product, Equals, DataService[NotUsed], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SimulateData
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. DataService
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SimulateData(model: Model)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  8. def forecast[F[_], G[_]](s: PfState[F])(implicit f: Collection[F]): Flow[Double, F[ObservationWithState], NotUsed]

    Permalink

    Compute an empirical forecast, starting from a filtering distribution estimate

    Compute an empirical forecast, starting from a filtering distribution estimate

    s

    a PfState object, the output of a particle filter

  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  11. val model: Model

    Permalink
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. def observations: Source[Data, NotUsed]

    Permalink
    Definition Classes
    SimulateDataDataService
  16. def simLGCP(start: Time, end: Time, precision: Int): Vector[ObservationWithState]

    Permalink

    Simulate the log-Gaussian Cox-Process using thinning

    Simulate the log-Gaussian Cox-Process using thinning

    start

    the starting time of the process

    precision

    an integer specifying the timestep between simulating the latent state, 10e-precision

    returns

    a vector of Data specifying when events happened

  17. def simMarkov(dt: TimeIncrement): Process[ObservationWithState]

    Permalink

    Simulate from a POMP model (not including the Log-Gaussian Cox-Process) on a regular grid from t = 0 using the MarkovChain from the breeze package

    Simulate from a POMP model (not including the Log-Gaussian Cox-Process) on a regular grid from t = 0 using the MarkovChain from the breeze package

    dt

    the time increment between sucessive realisations of the POMP model

    returns

    a Process, representing a distribution which depends on previous draws

  18. def simPompModel(t0: Time): Flow[Double, ObservationWithState, NotUsed]

    Permalink

    Simulate from a POMP model on an irregular grid, given an initial time and a stream of times at which simulate from the model

    Simulate from a POMP model on an irregular grid, given an initial time and a stream of times at which simulate from the model

    t0

    the start time of the process

    returns

    an Akka Flow transforming a Stream from Time to ObservationWithState

  19. def simRegular(dt: TimeIncrement): Source[ObservationWithState, NotUsed]

    Permalink

    Simulate from any model on a regular grid from t = 0 and return an Akka stream of realisations

    Simulate from any model on a regular grid from t = 0 and return an Akka stream of realisations

    dt

    the time increment between successive realisations of the POMP model

    returns

    an Akka Stream containing a realisation of the process

  20. def simStep(deltat: TimeIncrement): (ObservationWithState) ⇒ Rand[ObservationWithState]

    Permalink

    Simulate a single step from a model, return a distribution over the possible values of the next step

    Simulate a single step from a model, return a distribution over the possible values of the next step

    deltat

    the time difference between the previous and next realisation of the process

    returns

    a function from the previous datapoint to a Rand (Monadic distribution) representing the distribution of the next datapoint

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from DataService[NotUsed]

Inherited from AnyRef

Inherited from Any

Ungrouped