Class

com.github.jonnylaw.model

ParticleMetropolisState

Related Doc: package model

Permalink

case class ParticleMetropolisState(pf: (Parameters) ⇒ Id[(LogLikelihood, Vector[State])], initialParams: Parameters, proposal: (Parameters) ⇒ Rand[Parameters], prior: (Parameters) ⇒ LogLikelihood) extends MetropolisHastings[Id] with Product with Serializable

Particle Metropolis hastings which also samples the state

Linear Supertypes
Serializable, Serializable, Product, Equals, MetropolisHastings[Id], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ParticleMetropolisState
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. MetropolisHastings
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ParticleMetropolisState(pf: (Parameters) ⇒ Id[(LogLikelihood, Vector[State])], initialParams: Parameters, proposal: (Parameters) ⇒ Rand[Parameters], prior: (Parameters) ⇒ LogLikelihood)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  8. def g: Monad[Id]

    Permalink
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. val initialParams: Parameters

    Permalink

    The initial parameters, representing the place the Metropolis hastings algorithm starts

    The initial parameters, representing the place the Metropolis hastings algorithm starts

    Definition Classes
    ParticleMetropolisStateMetropolisHastings
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. def iters: Source[MetropState, NotUsed]

    Permalink
  13. def logLikelihood: (Parameters) ⇒ Id[LogLikelihood]

    Permalink

    The likelihood function of the model, typically a pseudo-marginal likelihood estimated using the bootstrap particle filter for the PMMH algorithm

    The likelihood function of the model, typically a pseudo-marginal likelihood estimated using the bootstrap particle filter for the PMMH algorithm

    Definition Classes
    ParticleMetropolisStateMetropolisHastings
  14. def logTransition(from: Parameters, to: Parameters): LogLikelihood

    Permalink

    Definition of the log-transition, used when calculating the acceptance ratio This is the probability of moving between parameters according to the proposal distribution Note: When using a symmetric proposal distribution (eg.

    Definition of the log-transition, used when calculating the acceptance ratio This is the probability of moving between parameters according to the proposal distribution Note: When using a symmetric proposal distribution (eg. Normal) this cancels in the acceptance ratio

    from

    the previous parameter value

    to

    the proposed parameter value

    Definition Classes
    ParticleMetropolisStateMetropolisHastings
  15. def mhStep(p: ParamsState): Id[ParamsState]

    Permalink

    A single step of the metropolis hastings algorithm to be used with breeze implementation of Markov Chain.

    A single step of the metropolis hastings algorithm to be used with breeze implementation of Markov Chain. This is an alteration to the implementation in breeze, here ParamsState holds on to the previous calculated pseudo marginal log-likelihood value so we don't need to run the previous particle filter again each iteration

    Definition Classes
    MetropolisHastings
  16. def mhStepState: (MetropState) ⇒ MetropState

    Permalink
  17. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. def params: Source[ParamsState, NotUsed]

    Permalink
  21. val pf: (Parameters) ⇒ Id[(LogLikelihood, Vector[State])]

    Permalink
  22. val prior: (Parameters) ⇒ LogLikelihood

    Permalink

    Prior distribution for the parameters, with default implementation

    Prior distribution for the parameters, with default implementation

    Definition Classes
    ParticleMetropolisStateMetropolisHastings
  23. val proposal: (Parameters) ⇒ Rand[Parameters]

    Permalink

    Proposal density, to propose new parameters for a model

    Proposal density, to propose new parameters for a model

    Definition Classes
    ParticleMetropolisStateMetropolisHastings
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from MetropolisHastings[Id]

Inherited from AnyRef

Inherited from Any

Ungrouped