Object

com.github.jonnylaw.model

Resampling

Related Doc: package model

Permalink

object Resampling

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Resampling
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def asyncTreeSystematicResampling[A](threads: Int)(particles: Vector[A], weights: Vector[LogLikelihood])(implicit ec: ExecutionContext): Future[Vector[A]]

    Permalink

    An efficient parallel implementation of of systematic resampling

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def cumSum[F[_], A](l: F[A])(implicit f: Collection[F], N: Numeric[A]): F[A]

    Permalink

    Generic cumulative sum

  8. def empDist[F[_]](w: F[Double])(implicit f: Collection[F]): F[Double]

    Permalink

    Calculate the empirical cumulative distribution function for a collection of weights

  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  11. def expNormalise[F[_]](prob: F[LogLikelihood])(implicit f: Collection[F]): F[Double]

    Permalink

    Given a vector of log-likelihoods, normalise them and exp them without overflow

  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def findAllInTreeMap[A](ks: Vector[Double], ecdf: TreeMap[Double, A]): Vector[A]

    Permalink

    Given a list of ordered doubles, k, find the element at the corresponding position in the empirical cumulative distribution function represented by a treeMap

  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def multinomialResampling[A](particles: Vector[A], weights: Vector[LogLikelihood]): Vector[A]

    Permalink

    Multinomial Resampling, sample from a categorical distribution with probabilities equal to the particle weights

  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. def normalise[F[_]](prob: F[Double])(implicit f: Collection[F]): F[Double]

    Permalink

    Given a vector of doubles, returns a normalised vector with probabilities summing to one

    Given a vector of doubles, returns a normalised vector with probabilities summing to one

    prob

    a vector of unnormalised probabilities

    returns

    a vector of normalised probabilities

  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. def residualResampling[A](particles: Vector[A], weights: Vector[Double]): Vector[A]

    Permalink

    Residual Resampling Select particles in proportion to their weights, ie particle (xi, wi) appears ki = n * wi times Resample m = n - total allocated particles particles according to w = n * wi - ki, using other resampling technique

  23. def sampleMany[A](n: Int, s: Vector[A]): IndexedSeq[A]

    Permalink

    Sample unifomly without replacement

  24. def sampleOne[F[_], A](s: F[A])(implicit f: Collection[F]): A

    Permalink

    Sample one thing, uniformly, from a collection F

  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. def treeEcdf[A](items: Vector[A], prob: Vector[Double]): TreeMap[Double, A]

    Permalink

    Create an empirical cumulative distribution function from a set of particles and associated weights, and represent it as a treeMap

  28. def treeStratifiedResampling[A](s: Vector[A], w: Vector[Double]): Vector[A]

    Permalink

    Stratified resampling implemented using a TreeMap Sample n ORDERED uniform random numbers (one for each particle) using a linear transformation of a U(0,1) RV

  29. def treeSystematicResampling[A](particles: Vector[A], weights: Vector[LogLikelihood]): Vector[A]

    Permalink

    An efficient implementation of of systematic resampling

  30. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped