Class/Object

org.apache.spark.ml.regression

StackingRegressionModel

Related Docs: object StackingRegressionModel | package regression

Permalink

class StackingRegressionModel extends PredictionModel[Vector, StackingRegressionModel] with StackingRegressorParams with MLWritable with Serializable

Linear Supertypes
MLWritable, StackingRegressorParams, StackingParams, HasBaseLearners, HasStacker, HasWeightCol, HasParallelism, PredictionModel[Vector, StackingRegressionModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[StackingRegressionModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StackingRegressionModel
  2. MLWritable
  3. StackingRegressorParams
  4. StackingParams
  5. HasBaseLearners
  6. HasStacker
  7. HasWeightCol
  8. HasParallelism
  9. PredictionModel
  10. PredictorParams
  11. HasPredictionCol
  12. HasFeaturesCol
  13. HasLabelCol
  14. Model
  15. Transformer
  16. PipelineStage
  17. Logging
  18. Params
  19. Serializable
  20. Serializable
  21. Identifiable
  22. AnyRef
  23. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new StackingRegressionModel(models: Array[EnsemblePredictionModelType], stack: EnsemblePredictionModelType)

    Permalink
  2. new StackingRegressionModel(uid: String, models: Array[EnsemblePredictionModelType], stack: EnsemblePredictionModelType)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. val baseLearners: Param[Array[EnsemblePredictorType]]

    Permalink

    param for the estimators that will be used by the ensemble learner as base learners

    param for the estimators that will be used by the ensemble learner as base learners

    Definition Classes
    HasBaseLearners
  7. final def clear(param: Param[_]): StackingRegressionModel.this.type

    Permalink
    Definition Classes
    Params
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def copy(extra: ParamMap): StackingRegressionModel

    Permalink
    Definition Classes
    StackingRegressionModel → Model → Transformer → PipelineStage → Params
  10. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  15. def explainParams(): String

    Permalink
    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  18. final val featuresCol: Param[String]

    Permalink
    Definition Classes
    HasFeaturesCol
  19. def featuresDataType: DataType

    Permalink
    Attributes
    protected
    Definition Classes
    PredictionModel
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fitBaseLearner(baseLearner: EnsemblePredictorType, labelColName: String, featuresColName: String, predictionColName: String, weightColName: Option[String])(df: DataFrame): EnsemblePredictionModelType

    Permalink
    Definition Classes
    HasBaseLearners
  22. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  23. def getBaseLearners: Array[EnsemblePredictorType]

    Permalink

    Definition Classes
    HasBaseLearners
  24. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  25. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  26. final def getFeaturesCol: String

    Permalink
    Definition Classes
    HasFeaturesCol
  27. final def getLabelCol: String

    Permalink
    Definition Classes
    HasLabelCol
  28. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  29. def getParallelism: Int

    Permalink
    Definition Classes
    HasParallelism
  30. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  31. final def getPredictionCol: String

    Permalink
    Definition Classes
    HasPredictionCol
  32. def getStacker: EnsemblePredictorType

    Permalink

    Definition Classes
    HasStacker
  33. final def getWeightCol: String

    Permalink
    Definition Classes
    HasWeightCol
  34. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  35. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  36. def hasParent: Boolean

    Permalink
    Definition Classes
    Model
  37. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  38. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  39. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  40. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  41. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  42. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  43. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  44. final val labelCol: Param[String]

    Permalink
    Definition Classes
    HasLabelCol
  45. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  46. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  47. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  48. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  49. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  50. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  51. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  52. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  53. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  54. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  55. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  56. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  57. val models: Array[EnsemblePredictionModelType]

    Permalink
  58. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  59. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  60. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  61. def numFeatures: Int

    Permalink
    Definition Classes
    PredictionModel
    Annotations
    @Since( "1.6.0" )
  62. val parallelism: IntParam

    Permalink
    Definition Classes
    HasParallelism
  63. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  64. var parent: Estimator[StackingRegressionModel]

    Permalink
    Definition Classes
    Model
  65. def predict(features: Vector): Double

    Permalink
    Definition Classes
    StackingRegressionModel → PredictionModel
  66. final val predictionCol: Param[String]

    Permalink
    Definition Classes
    HasPredictionCol
  67. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  68. final def set(paramPair: ParamPair[_]): StackingRegressionModel.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  69. final def set(param: String, value: Any): StackingRegressionModel.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  70. final def set[T](param: Param[T], value: T): StackingRegressionModel.this.type

    Permalink
    Definition Classes
    Params
  71. final def setDefault(paramPairs: ParamPair[_]*): StackingRegressionModel.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  72. final def setDefault[T](param: Param[T], value: T): StackingRegressionModel.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  73. def setFeaturesCol(value: String): StackingRegressionModel

    Permalink
    Definition Classes
    PredictionModel
  74. def setParent(parent: Estimator[StackingRegressionModel]): StackingRegressionModel

    Permalink
    Definition Classes
    Model
  75. def setPredictionCol(value: String): StackingRegressionModel

    Permalink
    Definition Classes
    PredictionModel
  76. val stack: EnsemblePredictionModelType

    Permalink
  77. val stacker: Param[EnsemblePredictorType]

    Permalink

    param for the estimator that will be used by the ensemble learner to aggregate results of base learner(s)

    param for the estimator that will be used by the ensemble learner to aggregate results of base learner(s)

    Definition Classes
    HasStacker
  78. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  79. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  80. def transform(dataset: Dataset[_]): DataFrame

    Permalink
    Definition Classes
    PredictionModel → Transformer
  81. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  82. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  83. def transformImpl(dataset: Dataset[_]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    PredictionModel
  84. def transformSchema(schema: StructType): StructType

    Permalink
    Definition Classes
    PredictionModel → PipelineStage
  85. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  86. val uid: String

    Permalink
    Definition Classes
    StackingRegressionModel → Identifiable
  87. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PredictorParams
  88. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  89. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  90. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  91. final val weightCol: Param[String]

    Permalink
    Definition Classes
    HasWeightCol
  92. def write: MLWriter

    Permalink
    Definition Classes
    StackingRegressionModel → MLWritable

Inherited from MLWritable

Inherited from StackingRegressorParams

Inherited from StackingParams

Inherited from HasBaseLearners

Inherited from HasStacker

Inherited from HasWeightCol

Inherited from HasParallelism

Inherited from PredictionModel[Vector, StackingRegressionModel]

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Model[StackingRegressionModel]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

getParam

param

Ungrouped