001 /* 002 * Copyright (C) 2009 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017 package com.google.common.cache; 018 019 import static com.google.common.base.Objects.firstNonNull; 020 import static com.google.common.base.Preconditions.checkArgument; 021 import static com.google.common.base.Preconditions.checkNotNull; 022 import static com.google.common.base.Preconditions.checkState; 023 024 import com.google.common.annotations.Beta; 025 import com.google.common.annotations.GwtCompatible; 026 import com.google.common.annotations.GwtIncompatible; 027 import com.google.common.base.Ascii; 028 import com.google.common.base.Equivalence; 029 import com.google.common.base.Equivalences; 030 import com.google.common.base.Objects; 031 import com.google.common.base.Supplier; 032 import com.google.common.base.Suppliers; 033 import com.google.common.base.Ticker; 034 import com.google.common.cache.AbstractCache.SimpleStatsCounter; 035 import com.google.common.cache.AbstractCache.StatsCounter; 036 import com.google.common.cache.LocalCache.Strength; 037 038 import java.lang.ref.SoftReference; 039 import java.lang.ref.WeakReference; 040 import java.util.ConcurrentModificationException; 041 import java.util.concurrent.ConcurrentHashMap; 042 import java.util.concurrent.TimeUnit; 043 import java.util.logging.Level; 044 import java.util.logging.Logger; 045 046 import javax.annotation.CheckReturnValue; 047 048 /** 049 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the 050 * following features: 051 * 052 * <ul> 053 * <li>automatic loading of entries into the cache 054 * <li>least-recently-used eviction when a maximum size is exceeded 055 * <li>time-based expiration of entries, measured since last access or last write 056 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references 057 * <li>values automatically wrapped in {@linkplain WeakReference weak} or 058 * {@linkplain SoftReference soft} references 059 * <li>notification of evicted (or otherwise removed) entries 060 * </ul> 061 * 062 * These features are all optional; caches can be created using all or none of them. By default 063 * cache instances created by {@code CacheBuilder} will not perform any type of eviction. 064 * 065 * <p>Usage example: <pre> {@code 066 * 067 * LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder() 068 * .maximumSize(10000) 069 * .expireAfterWrite(10, TimeUnit.MINUTES) 070 * .removalListener(MY_LISTENER) 071 * .build( 072 * new CacheLoader<Key, Graph>() { 073 * public Graph load(Key key) throws AnyException { 074 * return createExpensiveGraph(key); 075 * } 076 * });}</pre> 077 * 078 * 079 * <p>The returned cache is implemented as a hash table with similar performance characteristics to 080 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and 081 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly 082 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads 083 * modify the cache after the iterator is created, it is undefined which of these changes, if any, 084 * are reflected in that iterator. These iterators never throw {@link 085 * ConcurrentModificationException}. 086 * 087 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the 088 * {@link Object#equals equals} method) to determine equality for keys or values. However, if 089 * {@link #weakKeys} was specified, the cache uses identity ({@code ==}) 090 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was 091 * specified, the cache uses identity comparisons for values. 092 * 093 * <p>Entries are automatically evicted from the cache when any of 094 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight}, 095 * {@linkplain #expireAfterWrite expireAfterWrite}, 096 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 097 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested. 098 * 099 * <p>If {@linkplain #maximumSize(long) maximumSize} or 100 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache 101 * modification. 102 * 103 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or 104 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each 105 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired 106 * entries may be counted in {@link Cache#size}, but will never be visible to read or write 107 * operations. 108 * 109 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or 110 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in 111 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be 112 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to 113 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be 114 * visible to read or write operations. 115 * 116 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which 117 * will be performed during write operations, or during occasional read operations in the absense of 118 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but 119 * calling it should not be necessary with a high throughput cache. Only caches built with 120 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite}, 121 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys}, 122 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic 123 * maintenance. 124 * 125 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches 126 * retain all the configuration properties of the original cache. Note that the serialized form does 127 * <i>not</i> include cache contents, but only configuration. 128 * 129 * <p>See the Guava User Guide article on <a href= 130 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level 131 * explanation. 132 * 133 * @param <K> the base key type for all caches created by this builder 134 * @param <V> the base value type for all caches created by this builder 135 * @author Charles Fry 136 * @author Kevin Bourrillion 137 * @since 10.0 138 */ 139 @GwtCompatible(emulated = true) 140 public final class CacheBuilder<K, V> { 141 private static final int DEFAULT_INITIAL_CAPACITY = 16; 142 private static final int DEFAULT_CONCURRENCY_LEVEL = 4; 143 private static final int DEFAULT_EXPIRATION_NANOS = 0; 144 private static final int DEFAULT_REFRESH_NANOS = 0; 145 146 static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance( 147 new StatsCounter() { 148 @Override 149 public void recordHits(int count) {} 150 151 @Override 152 public void recordMisses(int count) {} 153 154 @Override 155 public void recordLoadSuccess(long loadTime) {} 156 157 @Override 158 public void recordLoadException(long loadTime) {} 159 160 @Override 161 public void recordEviction() {} 162 163 @Override 164 public CacheStats snapshot() { 165 return EMPTY_STATS; 166 } 167 }); 168 static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0); 169 170 static final Supplier<SimpleStatsCounter> CACHE_STATS_COUNTER = 171 new Supplier<SimpleStatsCounter>() { 172 @Override 173 public SimpleStatsCounter get() { 174 return new SimpleStatsCounter(); 175 } 176 }; 177 178 enum NullListener implements RemovalListener<Object, Object> { 179 INSTANCE; 180 181 @Override 182 public void onRemoval(RemovalNotification<Object, Object> notification) {} 183 } 184 185 enum OneWeigher implements Weigher<Object, Object> { 186 INSTANCE; 187 188 @Override 189 public int weigh(Object key, Object value) { 190 return 1; 191 } 192 } 193 194 static final Ticker NULL_TICKER = new Ticker() { 195 @Override 196 public long read() { 197 return 0; 198 } 199 }; 200 201 private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName()); 202 203 static final int UNSET_INT = -1; 204 205 boolean strictParsing = true; 206 207 int initialCapacity = UNSET_INT; 208 int concurrencyLevel = UNSET_INT; 209 long maximumSize = UNSET_INT; 210 long maximumWeight = UNSET_INT; 211 Weigher<? super K, ? super V> weigher; 212 213 Strength keyStrength; 214 Strength valueStrength; 215 216 long expireAfterWriteNanos = UNSET_INT; 217 long expireAfterAccessNanos = UNSET_INT; 218 long refreshNanos = UNSET_INT; 219 220 Equivalence<Object> keyEquivalence; 221 Equivalence<Object> valueEquivalence; 222 223 RemovalListener<? super K, ? super V> removalListener; 224 Ticker ticker; 225 226 Supplier<? extends StatsCounter> statsCounterSupplier = CACHE_STATS_COUNTER; 227 228 // TODO(fry): make constructor private and update tests to use newBuilder 229 CacheBuilder() {} 230 231 /** 232 * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys, 233 * strong values, and no automatic eviction of any kind. 234 */ 235 public static CacheBuilder<Object, Object> newBuilder() { 236 return new CacheBuilder<Object, Object>(); 237 } 238 239 /** 240 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 241 * 242 * @since 12.0 243 */ 244 @Beta 245 @GwtIncompatible("To be supported") 246 public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) { 247 return spec.toCacheBuilder() 248 .lenientParsing(); 249 } 250 251 /** 252 * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}. 253 * This is especially useful for command-line configuration of a {@code CacheBuilder}. 254 * 255 * @param spec a String in the format specified by {@link CacheBuilderSpec} 256 * @since 12.0 257 */ 258 @Beta 259 @GwtIncompatible("To be supported") 260 public static CacheBuilder<Object, Object> from(String spec) { 261 return from(CacheBuilderSpec.parse(spec)); 262 } 263 264 /** 265 * Enables lenient parsing. Useful for tests and spec parsing. 266 */ 267 CacheBuilder<K, V> lenientParsing() { 268 strictParsing = false; 269 return this; 270 } 271 272 /** 273 * Sets a custom {@code Equivalence} strategy for comparing keys. 274 * 275 * <p>By default, the cache uses {@link Equivalences#identity} to determine key equality when 276 * {@link #weakKeys} is specified, and {@link Equivalences#equals()} otherwise. 277 */ 278 CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) { 279 checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence); 280 keyEquivalence = checkNotNull(equivalence); 281 return this; 282 } 283 284 Equivalence<Object> getKeyEquivalence() { 285 return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence()); 286 } 287 288 /** 289 * Sets a custom {@code Equivalence} strategy for comparing values. 290 * 291 * <p>By default, the cache uses {@link Equivalences#identity} to determine value equality when 292 * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalences#equals()} 293 * otherwise. 294 */ 295 CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) { 296 checkState(valueEquivalence == null, 297 "value equivalence was already set to %s", valueEquivalence); 298 this.valueEquivalence = checkNotNull(equivalence); 299 return this; 300 } 301 302 Equivalence<Object> getValueEquivalence() { 303 return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence()); 304 } 305 306 /** 307 * Sets the minimum total size for the internal hash tables. For example, if the initial capacity 308 * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each 309 * having a hash table of size eight. Providing a large enough estimate at construction time 310 * avoids the need for expensive resizing operations later, but setting this value unnecessarily 311 * high wastes memory. 312 * 313 * @throws IllegalArgumentException if {@code initialCapacity} is negative 314 * @throws IllegalStateException if an initial capacity was already set 315 */ 316 public CacheBuilder<K, V> initialCapacity(int initialCapacity) { 317 checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s", 318 this.initialCapacity); 319 checkArgument(initialCapacity >= 0); 320 this.initialCapacity = initialCapacity; 321 return this; 322 } 323 324 int getInitialCapacity() { 325 return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity; 326 } 327 328 /** 329 * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The 330 * table is internally partitioned to try to permit the indicated number of concurrent updates 331 * without contention. Because assignment of entries to these partitions is not necessarily 332 * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to 333 * accommodate as many threads as will ever concurrently modify the table. Using a significantly 334 * higher value than you need can waste space and time, and a significantly lower value can lead 335 * to thread contention. But overestimates and underestimates within an order of magnitude do not 336 * usually have much noticeable impact. A value of one permits only one thread to modify the cache 337 * at a time, but since read operations and cache loading computations can proceed concurrently, 338 * this still yields higher concurrency than full synchronization. 339 * 340 * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this 341 * value, you should always choose it explicitly. 342 * 343 * <p>The current implementation uses the concurrency level to create a fixed number of hashtable 344 * segments, each governed by its own write lock. The segment lock is taken once for each explicit 345 * write, and twice for each cache loading computation (once prior to loading the new value, 346 * and once after loading completes). Much internal cache management is performed at the segment 347 * granularity. For example, access queues and write queues are kept per segment when they are 348 * required by the selected eviction algorithm. As such, when writing unit tests it is not 349 * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction 350 * behavior. 351 * 352 * <p>Note that future implementations may abandon segment locking in favor of more advanced 353 * concurrency controls. 354 * 355 * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive 356 * @throws IllegalStateException if a concurrency level was already set 357 */ 358 public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) { 359 checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s", 360 this.concurrencyLevel); 361 checkArgument(concurrencyLevel > 0); 362 this.concurrencyLevel = concurrencyLevel; 363 return this; 364 } 365 366 int getConcurrencyLevel() { 367 return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel; 368 } 369 370 /** 371 * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict 372 * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the 373 * cache evicts entries that are less likely to be used again. For example, the cache may evict an 374 * entry because it hasn't been used recently or very often. 375 * 376 * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the 377 * cache. This can be useful in testing, or to disable caching temporarily without a code change. 378 * 379 * @param size the maximum size of the cache 380 * @throws IllegalArgumentException if {@code size} is negative 381 * @throws IllegalStateException if a maximum size was already set 382 */ 383 public CacheBuilder<K, V> maximumSize(long size) { 384 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 385 this.maximumSize); 386 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 387 this.maximumWeight); 388 checkState(this.weigher == null, "maximum size can not be combined with weigher"); 389 checkArgument(size >= 0, "maximum size must not be negative"); 390 this.maximumSize = size; 391 return this; 392 } 393 394 /** 395 * Specifies the maximum weight of entries the cache may contain. Weight is determined using the 396 * {@link Weigher} specified with {@link #weigher}, and use of this method requires a 397 * corresponding call to {@link #weigher} prior to calling {@link #build}. 398 * 399 * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache 400 * size grows close to the maximum, the cache evicts entries that are less likely to be used 401 * again. For example, the cache may evict an entry because it hasn't been used recently or very 402 * often. 403 * 404 * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into 405 * cache. This can be useful in testing, or to disable caching temporarily without a code 406 * change. 407 * 408 * @param weight the maximum weight the cache may contain 409 * @throws IllegalArgumentException if {@code size} is negative 410 * @throws IllegalStateException if a maximum size was already set 411 * @since 11.0 412 */ 413 public CacheBuilder<K, V> maximumWeight(long weight) { 414 checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s", 415 this.maximumWeight); 416 checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s", 417 this.maximumSize); 418 this.maximumWeight = weight; 419 checkArgument(weight >= 0, "maximum weight must not be negative"); 420 return this; 421 } 422 423 /** 424 * Specifies the weigher to use in determining the weight of entries. Entry weight is taken 425 * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and 426 * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to 427 * calling {@link #build}. Weights are measured and recorded when entries are inserted into the 428 * cache, and are thus effectively static during the lifetime of a cache entry. 429 * 430 * <p>When the weight of an entry is zero it will not be considered for size-based eviction 431 * (though it still may be evicted by other means). 432 * 433 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 434 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 435 * original reference or the returned reference may be used to complete configuration and build 436 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 437 * building caches whose key or value types are incompatible with the types accepted by the 438 * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results, 439 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 440 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 441 * 442 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 443 * a cache whose key or value type is incompatible with the weigher, you will likely experience 444 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 445 * 446 * @param weigher the weigher to use in calculating the weight of cache entries 447 * @throws IllegalArgumentException if {@code size} is negative 448 * @throws IllegalStateException if a maximum size was already set 449 * @since 11.0 450 */ 451 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher( 452 Weigher<? super K1, ? super V1> weigher) { 453 checkState(this.weigher == null); 454 if (strictParsing) { 455 checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size", 456 this.maximumSize); 457 } 458 459 // safely limiting the kinds of caches this can produce 460 @SuppressWarnings("unchecked") 461 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 462 me.weigher = checkNotNull(weigher); 463 return me; 464 } 465 466 long getMaximumWeight() { 467 if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) { 468 return 0; 469 } 470 return (weigher == null) ? maximumSize : maximumWeight; 471 } 472 473 // Make a safe contravariant cast now so we don't have to do it over and over. 474 @SuppressWarnings("unchecked") 475 <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() { 476 return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE); 477 } 478 479 /** 480 * Specifies that each key (not value) stored in the cache should be strongly referenced. 481 * 482 * @throws IllegalStateException if the key strength was already set 483 */ 484 CacheBuilder<K, V> strongKeys() { 485 return setKeyStrength(Strength.STRONG); 486 } 487 488 /** 489 * Specifies that each key (not value) stored in the cache should be wrapped in a {@link 490 * WeakReference} (by default, strong references are used). 491 * 492 * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==}) 493 * comparison to determine equality of keys. 494 * 495 * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size}, 496 * but will never be visible to read or write operations; such entries are cleaned up as part of 497 * the routine maintenance described in the class javadoc. 498 * 499 * @throws IllegalStateException if the key strength was already set 500 */ 501 @GwtIncompatible("java.lang.ref.WeakReference") 502 public CacheBuilder<K, V> weakKeys() { 503 return setKeyStrength(Strength.WEAK); 504 } 505 506 CacheBuilder<K, V> setKeyStrength(Strength strength) { 507 checkState(keyStrength == null, "Key strength was already set to %s", keyStrength); 508 keyStrength = checkNotNull(strength); 509 return this; 510 } 511 512 Strength getKeyStrength() { 513 return firstNonNull(keyStrength, Strength.STRONG); 514 } 515 516 /** 517 * Specifies that each value (not key) stored in the cache should be strongly referenced. 518 * 519 * @throws IllegalStateException if the value strength was already set 520 */ 521 CacheBuilder<K, V> strongValues() { 522 return setValueStrength(Strength.STRONG); 523 } 524 525 /** 526 * Specifies that each value (not key) stored in the cache should be wrapped in a 527 * {@link WeakReference} (by default, strong references are used). 528 * 529 * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor 530 * candidate for caching; consider {@link #softValues} instead. 531 * 532 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 533 * comparison to determine equality of values. 534 * 535 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 536 * but will never be visible to read or write operations; such entries are cleaned up as part of 537 * the routine maintenance described in the class javadoc. 538 * 539 * @throws IllegalStateException if the value strength was already set 540 */ 541 @GwtIncompatible("java.lang.ref.WeakReference") 542 public CacheBuilder<K, V> weakValues() { 543 return setValueStrength(Strength.WEAK); 544 } 545 546 /** 547 * Specifies that each value (not key) stored in the cache should be wrapped in a 548 * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will 549 * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory 550 * demand. 551 * 552 * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain 553 * #maximumSize(long) maximum size} instead of using soft references. You should only use this 554 * method if you are well familiar with the practical consequences of soft references. 555 * 556 * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==}) 557 * comparison to determine equality of values. 558 * 559 * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size}, 560 * but will never be visible to read or write operations; such entries are cleaned up as part of 561 * the routine maintenance described in the class javadoc. 562 * 563 * @throws IllegalStateException if the value strength was already set 564 */ 565 @GwtIncompatible("java.lang.ref.SoftReference") 566 public CacheBuilder<K, V> softValues() { 567 return setValueStrength(Strength.SOFT); 568 } 569 570 CacheBuilder<K, V> setValueStrength(Strength strength) { 571 checkState(valueStrength == null, "Value strength was already set to %s", valueStrength); 572 valueStrength = checkNotNull(strength); 573 return this; 574 } 575 576 Strength getValueStrength() { 577 return firstNonNull(valueStrength, Strength.STRONG); 578 } 579 580 /** 581 * Specifies that each entry should be automatically removed from the cache once a fixed duration 582 * has elapsed after the entry's creation, or the most recent replacement of its value. 583 * 584 * <p>When {@code duration} is zero, this method hands off to 585 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 586 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 587 * change. 588 * 589 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 590 * write operations. Expired entries are cleaned up as part of the routine maintenance described 591 * in the class javadoc. 592 * 593 * @param duration the length of time after an entry is created that it should be automatically 594 * removed 595 * @param unit the unit that {@code duration} is expressed in 596 * @throws IllegalArgumentException if {@code duration} is negative 597 * @throws IllegalStateException if the time to live or time to idle was already set 598 */ 599 public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) { 600 checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns", 601 expireAfterWriteNanos); 602 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 603 this.expireAfterWriteNanos = unit.toNanos(duration); 604 return this; 605 } 606 607 long getExpireAfterWriteNanos() { 608 return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos; 609 } 610 611 /** 612 * Specifies that each entry should be automatically removed from the cache once a fixed duration 613 * has elapsed after the entry's creation, the most recent replacement of its value, or its last 614 * access. Access time is reset by all cache read and write operations (including 615 * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations 616 * on the collection-views of {@link Cache#asMap}. 617 * 618 * <p>When {@code duration} is zero, this method hands off to 619 * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum 620 * size or weight. This can be useful in testing, or to disable caching temporarily without a code 621 * change. 622 * 623 * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or 624 * write operations. Expired entries are cleaned up as part of the routine maintenance described 625 * in the class javadoc. 626 * 627 * @param duration the length of time after an entry is last accessed that it should be 628 * automatically removed 629 * @param unit the unit that {@code duration} is expressed in 630 * @throws IllegalArgumentException if {@code duration} is negative 631 * @throws IllegalStateException if the time to idle or time to live was already set 632 */ 633 public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) { 634 checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns", 635 expireAfterAccessNanos); 636 checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit); 637 this.expireAfterAccessNanos = unit.toNanos(duration); 638 return this; 639 } 640 641 long getExpireAfterAccessNanos() { 642 return (expireAfterAccessNanos == UNSET_INT) 643 ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos; 644 } 645 646 /** 647 * Specifies that active entries are eligible for automatic refresh once a fixed duration has 648 * elapsed after the entry's creation, or the most recent replacement of its value. The semantics 649 * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling 650 * {@link CacheLoader#reload}. 651 * 652 * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is 653 * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous 654 * implementation; otherwise refreshes will be performed during unrelated cache read and write 655 * operations. 656 * 657 * <p>Currently automatic refreshes are performed when the first stale request for an entry 658 * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload} 659 * and immediately return the new value if the returned future is complete, and the old value 660 * otherwise. 661 * 662 * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>. 663 * 664 * @param duration the length of time after an entry is created that it should be considered 665 * stale, and thus eligible for refresh 666 * @param unit the unit that {@code duration} is expressed in 667 * @throws IllegalArgumentException if {@code duration} is negative 668 * @throws IllegalStateException if the refresh interval was already set 669 * @since 11.0 670 */ 671 @Beta 672 @GwtIncompatible("To be supported") 673 public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) { 674 checkNotNull(unit); 675 checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos); 676 checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit); 677 this.refreshNanos = unit.toNanos(duration); 678 return this; 679 } 680 681 long getRefreshNanos() { 682 return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos; 683 } 684 685 /** 686 * Specifies a nanosecond-precision time source for use in determining when entries should be 687 * expired. By default, {@link System#nanoTime} is used. 688 * 689 * <p>The primary intent of this method is to facilitate testing of caches which have been 690 * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}. 691 * 692 * @throws IllegalStateException if a ticker was already set 693 */ 694 @GwtIncompatible("To be supported") 695 public CacheBuilder<K, V> ticker(Ticker ticker) { 696 checkState(this.ticker == null); 697 this.ticker = checkNotNull(ticker); 698 return this; 699 } 700 701 Ticker getTicker(boolean recordsTime) { 702 if (ticker != null) { 703 return ticker; 704 } 705 return recordsTime ? Ticker.systemTicker() : NULL_TICKER; 706 } 707 708 /** 709 * Specifies a listener instance, which all caches built using this {@code CacheBuilder} will 710 * notify each time an entry is removed from the cache by any means. 711 * 712 * <p>Each cache built by this {@code CacheBuilder} after this method is called invokes the 713 * supplied listener after removing an element for any reason (see removal causes in {@link 714 * RemovalCause}). It will invoke the listener as part of the routine maintenance described 715 * in the class javadoc. 716 * 717 * <p><b>Note:</b> <i>all exceptions thrown by {@code listener} will be logged (using 718 * {@link java.util.logging.Logger})and then swallowed</i>. 719 * 720 * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder} 721 * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the 722 * original reference or the returned reference may be used to complete configuration and build 723 * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from 724 * building caches whose key or value types are incompatible with the types accepted by the 725 * listener already provided; the {@code CacheBuilder} type cannot do this. For best results, 726 * simply use the standard method-chaining idiom, as illustrated in the documentation at top, 727 * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement. 728 * 729 * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build 730 * a cache whose key or value type is incompatible with the listener, you will likely experience 731 * a {@link ClassCastException} at some <i>undefined</i> point in the future. 732 * 733 * @throws IllegalStateException if a removal listener was already set 734 */ 735 @CheckReturnValue 736 @GwtIncompatible("To be supported") 737 public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener( 738 RemovalListener<? super K1, ? super V1> listener) { 739 checkState(this.removalListener == null); 740 741 // safely limiting the kinds of caches this can produce 742 @SuppressWarnings("unchecked") 743 CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this; 744 me.removalListener = checkNotNull(listener); 745 return me; 746 } 747 748 // Make a safe contravariant cast now so we don't have to do it over and over. 749 @SuppressWarnings("unchecked") 750 <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() { 751 return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE); 752 } 753 754 /** 755 * Disable the accumulation of {@link CacheStats} during the operation of the cache. 756 */ 757 CacheBuilder<K, V> disableStats() { 758 checkState(statsCounterSupplier == CACHE_STATS_COUNTER); 759 statsCounterSupplier = NULL_STATS_COUNTER; 760 return this; 761 } 762 763 Supplier<? extends StatsCounter> getStatsCounterSupplier() { 764 return statsCounterSupplier; 765 } 766 767 /** 768 * Builds a cache, which either returns an already-loaded value for a given key or atomically 769 * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently 770 * loading the value for this key, simply waits for that thread to finish and returns its 771 * loaded value. Note that multiple threads can concurrently load values for distinct keys. 772 * 773 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 774 * invoked again to create multiple independent caches. 775 * 776 * @param loader the cache loader used to obtain new values 777 * @return a cache having the requested features 778 */ 779 public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build( 780 CacheLoader<? super K1, V1> loader) { 781 checkWeightWithWeigher(); 782 return new LocalCache.LocalLoadingCache<K1, V1>(this, loader); 783 } 784 785 /** 786 * Builds a cache which does not automatically load values when keys are requested. 787 * 788 * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a 789 * {@code CacheLoader}. 790 * 791 * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be 792 * invoked again to create multiple independent caches. 793 * 794 * @return a cache having the requested features 795 * @since 11.0 796 */ 797 public <K1 extends K, V1 extends V> Cache<K1, V1> build() { 798 checkWeightWithWeigher(); 799 checkNonLoadingCache(); 800 return new LocalCache.LocalManualCache<K1, V1>(this); 801 } 802 803 private void checkNonLoadingCache() { 804 checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache"); 805 } 806 807 private void checkWeightWithWeigher() { 808 if (weigher == null) { 809 checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher"); 810 } else { 811 if (strictParsing) { 812 checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight"); 813 } else { 814 if (maximumWeight == UNSET_INT) { 815 logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight"); 816 } 817 } 818 } 819 } 820 821 /** 822 * Returns a string representation for this CacheBuilder instance. The exact form of the returned 823 * string is not specified. 824 */ 825 @Override 826 public String toString() { 827 Objects.ToStringHelper s = Objects.toStringHelper(this); 828 if (initialCapacity != UNSET_INT) { 829 s.add("initialCapacity", initialCapacity); 830 } 831 if (concurrencyLevel != UNSET_INT) { 832 s.add("concurrencyLevel", concurrencyLevel); 833 } 834 if (maximumWeight != UNSET_INT) { 835 if (weigher == null) { 836 s.add("maximumSize", maximumWeight); 837 } else { 838 s.add("maximumWeight", maximumWeight); 839 } 840 } 841 if (expireAfterWriteNanos != UNSET_INT) { 842 s.add("expireAfterWrite", expireAfterWriteNanos + "ns"); 843 } 844 if (expireAfterAccessNanos != UNSET_INT) { 845 s.add("expireAfterAccess", expireAfterAccessNanos + "ns"); 846 } 847 if (keyStrength != null) { 848 s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString())); 849 } 850 if (valueStrength != null) { 851 s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString())); 852 } 853 if (keyEquivalence != null) { 854 s.addValue("keyEquivalence"); 855 } 856 if (valueEquivalence != null) { 857 s.addValue("valueEquivalence"); 858 } 859 if (removalListener != null) { 860 s.addValue("removalListener"); 861 } 862 return s.toString(); 863 } 864 }