001/* 002 * Copyright (C) 2011 The Guava Authors 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 017package com.google.common.math; 018 019import static com.google.common.base.Preconditions.checkArgument; 020import static com.google.common.base.Preconditions.checkNotNull; 021import static com.google.common.math.MathPreconditions.checkNoOverflow; 022import static com.google.common.math.MathPreconditions.checkNonNegative; 023import static com.google.common.math.MathPreconditions.checkPositive; 024import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary; 025import static java.lang.Math.abs; 026import static java.lang.Math.min; 027import static java.math.RoundingMode.HALF_EVEN; 028import static java.math.RoundingMode.HALF_UP; 029 030import com.google.common.annotations.GwtCompatible; 031import com.google.common.annotations.GwtIncompatible; 032import com.google.common.annotations.VisibleForTesting; 033 034import java.math.BigInteger; 035import java.math.RoundingMode; 036 037/** 038 * A class for arithmetic on values of type {@code int}. Where possible, methods are defined and 039 * named analogously to their {@code BigInteger} counterparts. 040 * 041 * <p>The implementations of many methods in this class are based on material from Henry S. Warren, 042 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002). 043 * 044 * <p>Similar functionality for {@code long} and for {@link BigInteger} can be found in 045 * {@link LongMath} and {@link BigIntegerMath} respectively. For other common operations on 046 * {@code int} values, see {@link com.google.common.primitives.Ints}. 047 * 048 * @author Louis Wasserman 049 * @since 11.0 050 */ 051@GwtCompatible(emulated = true) 052public final class IntMath { 053 // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, || 054 055 /** 056 * Returns {@code true} if {@code x} represents a power of two. 057 * 058 * <p>This differs from {@code Integer.bitCount(x) == 1}, because 059 * {@code Integer.bitCount(Integer.MIN_VALUE) == 1}, but {@link Integer#MIN_VALUE} is not a power 060 * of two. 061 */ 062 public static boolean isPowerOfTwo(int x) { 063 return x > 0 & (x & (x - 1)) == 0; 064 } 065 066 /** 067 * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode. 068 * 069 * @throws IllegalArgumentException if {@code x <= 0} 070 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 071 * is not a power of two 072 */ 073 @SuppressWarnings("fallthrough") 074 public static int log2(int x, RoundingMode mode) { 075 checkPositive("x", x); 076 switch (mode) { 077 case UNNECESSARY: 078 checkRoundingUnnecessary(isPowerOfTwo(x)); 079 // fall through 080 case DOWN: 081 case FLOOR: 082 return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x); 083 084 case UP: 085 case CEILING: 086 return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1); 087 088 case HALF_DOWN: 089 case HALF_UP: 090 case HALF_EVEN: 091 // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5 092 int leadingZeros = Integer.numberOfLeadingZeros(x); 093 int cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros; 094 // floor(2^(logFloor + 0.5)) 095 int logFloor = (Integer.SIZE - 1) - leadingZeros; 096 return (x <= cmp) ? logFloor : logFloor + 1; 097 098 default: 099 throw new AssertionError(); 100 } 101 } 102 103 /** The biggest half power of two that can fit in an unsigned int. */ 104 @VisibleForTesting static final int MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333; 105 106 /** 107 * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode. 108 * 109 * @throws IllegalArgumentException if {@code x <= 0} 110 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x} 111 * is not a power of ten 112 */ 113 @GwtIncompatible("need BigIntegerMath to adequately test") 114 @SuppressWarnings("fallthrough") 115 public static int log10(int x, RoundingMode mode) { 116 checkPositive("x", x); 117 int logFloor = log10Floor(x); 118 int floorPow = powersOf10[logFloor]; 119 switch (mode) { 120 case UNNECESSARY: 121 checkRoundingUnnecessary(x == floorPow); 122 // fall through 123 case FLOOR: 124 case DOWN: 125 return logFloor; 126 case CEILING: 127 case UP: 128 return (x == floorPow) ? logFloor : logFloor + 1; 129 case HALF_DOWN: 130 case HALF_UP: 131 case HALF_EVEN: 132 // sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5 133 return (x <= halfPowersOf10[logFloor]) ? logFloor : logFloor + 1; 134 default: 135 throw new AssertionError(); 136 } 137 } 138 139 private static int log10Floor(int x) { 140 /* 141 * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation. 142 * 143 * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))), 144 * we can narrow the possible floor(log10(x)) values to two. For example, if floor(log2(x)) 145 * is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2. 146 */ 147 int y = maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)]; 148 // y is the higher of the two possible values of floor(log10(x)) 149 150 int sgn = (x - powersOf10[y]) >>> (Integer.SIZE - 1); 151 /* 152 * sgn is the sign bit of x - 10^y; it is 1 if x < 10^y, and 0 otherwise. If x < 10^y, then we 153 * want the lower of the two possible values, or y - 1, otherwise, we want y. 154 */ 155 return y - sgn; 156 } 157 158 // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i))) 159 @VisibleForTesting static final byte[] maxLog10ForLeadingZeros = {9, 9, 9, 8, 8, 8, 160 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0}; 161 162 @VisibleForTesting static final int[] powersOf10 = {1, 10, 100, 1000, 10000, 163 100000, 1000000, 10000000, 100000000, 1000000000}; 164 165 // halfPowersOf10[i] = largest int less than 10^(i + 0.5) 166 @VisibleForTesting static final int[] halfPowersOf10 = 167 {3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766, Integer.MAX_VALUE}; 168 169 /** 170 * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to 171 * {@code BigInteger.valueOf(b).pow(k).intValue()}. This implementation runs in {@code O(log k)} 172 * time. 173 * 174 * <p>Compare {@link #checkedPow}, which throws an {@link ArithmeticException} upon overflow. 175 * 176 * @throws IllegalArgumentException if {@code k < 0} 177 */ 178 @GwtIncompatible("failing tests") 179 public static int pow(int b, int k) { 180 checkNonNegative("exponent", k); 181 switch (b) { 182 case 0: 183 return (k == 0) ? 1 : 0; 184 case 1: 185 return 1; 186 case (-1): 187 return ((k & 1) == 0) ? 1 : -1; 188 case 2: 189 return (k < Integer.SIZE) ? (1 << k) : 0; 190 case (-2): 191 if (k < Integer.SIZE) { 192 return ((k & 1) == 0) ? (1 << k) : -(1 << k); 193 } else { 194 return 0; 195 } 196 } 197 for (int accum = 1;; k >>= 1) { 198 switch (k) { 199 case 0: 200 return accum; 201 case 1: 202 return b * accum; 203 default: 204 accum *= ((k & 1) == 0) ? 1 : b; 205 b *= b; 206 } 207 } 208 } 209 210 /** 211 * Returns the square root of {@code x}, rounded with the specified rounding mode. 212 * 213 * @throws IllegalArgumentException if {@code x < 0} 214 * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and 215 * {@code sqrt(x)} is not an integer 216 */ 217 @GwtIncompatible("need BigIntegerMath to adequately test") 218 @SuppressWarnings("fallthrough") 219 public static int sqrt(int x, RoundingMode mode) { 220 checkNonNegative("x", x); 221 int sqrtFloor = sqrtFloor(x); 222 switch (mode) { 223 case UNNECESSARY: 224 checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through 225 case FLOOR: 226 case DOWN: 227 return sqrtFloor; 228 case CEILING: 229 case UP: 230 return (sqrtFloor * sqrtFloor == x) ? sqrtFloor : sqrtFloor + 1; 231 case HALF_DOWN: 232 case HALF_UP: 233 case HALF_EVEN: 234 int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor; 235 /* 236 * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. 237 * Since both x and halfSquare are integers, this is equivalent to testing whether or not 238 * x <= halfSquare. (We have to deal with overflow, though.) 239 */ 240 return (x <= halfSquare | halfSquare < 0) ? sqrtFloor : sqrtFloor + 1; 241 default: 242 throw new AssertionError(); 243 } 244 } 245 246 private static int sqrtFloor(int x) { 247 // There is no loss of precision in converting an int to a double, according to 248 // http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2 249 return (int) Math.sqrt(x); 250 } 251 252 /** 253 * Returns the result of dividing {@code p} by {@code q}, rounding using the specified 254 * {@code RoundingMode}. 255 * 256 * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a} 257 * is not an integer multiple of {@code b} 258 */ 259 @SuppressWarnings("fallthrough") 260 public static int divide(int p, int q, RoundingMode mode) { 261 checkNotNull(mode); 262 if (q == 0) { 263 throw new ArithmeticException("/ by zero"); // for GWT 264 } 265 int div = p / q; 266 int rem = p - q * div; // equal to p % q 267 268 if (rem == 0) { 269 return div; 270 } 271 272 /* 273 * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to 274 * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of 275 * p / q. 276 * 277 * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise. 278 */ 279 int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1)); 280 boolean increment; 281 switch (mode) { 282 case UNNECESSARY: 283 checkRoundingUnnecessary(rem == 0); 284 // fall through 285 case DOWN: 286 increment = false; 287 break; 288 case UP: 289 increment = true; 290 break; 291 case CEILING: 292 increment = signum > 0; 293 break; 294 case FLOOR: 295 increment = signum < 0; 296 break; 297 case HALF_EVEN: 298 case HALF_DOWN: 299 case HALF_UP: 300 int absRem = abs(rem); 301 int cmpRemToHalfDivisor = absRem - (abs(q) - absRem); 302 // subtracting two nonnegative ints can't overflow 303 // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2). 304 if (cmpRemToHalfDivisor == 0) { // exactly on the half mark 305 increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0)); 306 } else { 307 increment = cmpRemToHalfDivisor > 0; // closer to the UP value 308 } 309 break; 310 default: 311 throw new AssertionError(); 312 } 313 return increment ? div + signum : div; 314 } 315 316 /** 317 * Returns {@code x mod m}. This differs from {@code x % m} in that it always returns a 318 * non-negative result. 319 * 320 * <p>For example:<pre> {@code 321 * 322 * mod(7, 4) == 3 323 * mod(-7, 4) == 1 324 * mod(-1, 4) == 3 325 * mod(-8, 4) == 0 326 * mod(8, 4) == 0}</pre> 327 * 328 * @throws ArithmeticException if {@code m <= 0} 329 */ 330 public static int mod(int x, int m) { 331 if (m <= 0) { 332 throw new ArithmeticException("Modulus " + m + " must be > 0"); 333 } 334 int result = x % m; 335 return (result >= 0) ? result : result + m; 336 } 337 338 /** 339 * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if 340 * {@code a == 0 && b == 0}. 341 * 342 * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0} 343 */ 344 public static int gcd(int a, int b) { 345 /* 346 * The reason we require both arguments to be >= 0 is because otherwise, what do you return on 347 * gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31 348 * isn't an int. 349 */ 350 checkNonNegative("a", a); 351 checkNonNegative("b", b); 352 if (a == 0) { 353 // 0 % b == 0, so b divides a, but the converse doesn't hold. 354 // BigInteger.gcd is consistent with this decision. 355 return b; 356 } else if (b == 0) { 357 return a; // similar logic 358 } 359 /* 360 * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm. 361 * This is >40% faster than the Euclidean algorithm in benchmarks. 362 */ 363 int aTwos = Integer.numberOfTrailingZeros(a); 364 a >>= aTwos; // divide out all 2s 365 int bTwos = Integer.numberOfTrailingZeros(b); 366 b >>= bTwos; // divide out all 2s 367 while (a != b) { // both a, b are odd 368 // The key to the binary GCD algorithm is as follows: 369 // Both a and b are odd. Assume a > b; then gcd(a - b, b) = gcd(a, b). 370 // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two. 371 372 // We bend over backwards to avoid branching, adapting a technique from 373 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax 374 375 int delta = a - b; // can't overflow, since a and b are nonnegative 376 377 int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1)); 378 // equivalent to Math.min(delta, 0) 379 380 a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b) 381 // a is now nonnegative and even 382 383 b += minDeltaOrZero; // sets b to min(old a, b) 384 a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b 385 } 386 return a << min(aTwos, bTwos); 387 } 388 389 /** 390 * Returns the sum of {@code a} and {@code b}, provided it does not overflow. 391 * 392 * @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic 393 */ 394 public static int checkedAdd(int a, int b) { 395 long result = (long) a + b; 396 checkNoOverflow(result == (int) result); 397 return (int) result; 398 } 399 400 /** 401 * Returns the difference of {@code a} and {@code b}, provided it does not overflow. 402 * 403 * @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic 404 */ 405 public static int checkedSubtract(int a, int b) { 406 long result = (long) a - b; 407 checkNoOverflow(result == (int) result); 408 return (int) result; 409 } 410 411 /** 412 * Returns the product of {@code a} and {@code b}, provided it does not overflow. 413 * 414 * @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic 415 */ 416 public static int checkedMultiply(int a, int b) { 417 long result = (long) a * b; 418 checkNoOverflow(result == (int) result); 419 return (int) result; 420 } 421 422 /** 423 * Returns the {@code b} to the {@code k}th power, provided it does not overflow. 424 * 425 * <p>{@link #pow} may be faster, but does not check for overflow. 426 * 427 * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed 428 * {@code int} arithmetic 429 */ 430 public static int checkedPow(int b, int k) { 431 checkNonNegative("exponent", k); 432 switch (b) { 433 case 0: 434 return (k == 0) ? 1 : 0; 435 case 1: 436 return 1; 437 case (-1): 438 return ((k & 1) == 0) ? 1 : -1; 439 case 2: 440 checkNoOverflow(k < Integer.SIZE - 1); 441 return 1 << k; 442 case (-2): 443 checkNoOverflow(k < Integer.SIZE); 444 return ((k & 1) == 0) ? 1 << k : -1 << k; 445 } 446 int accum = 1; 447 while (true) { 448 switch (k) { 449 case 0: 450 return accum; 451 case 1: 452 return checkedMultiply(accum, b); 453 default: 454 if ((k & 1) != 0) { 455 accum = checkedMultiply(accum, b); 456 } 457 k >>= 1; 458 if (k > 0) { 459 checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT); 460 b *= b; 461 } 462 } 463 } 464 } 465 466 @VisibleForTesting static final int FLOOR_SQRT_MAX_INT = 46340; 467 468 /** 469 * Returns {@code n!}, that is, the product of the first {@code n} positive 470 * integers, {@code 1} if {@code n == 0}, or {@link Integer#MAX_VALUE} if the 471 * result does not fit in a {@code int}. 472 * 473 * @throws IllegalArgumentException if {@code n < 0} 474 */ 475 public static int factorial(int n) { 476 checkNonNegative("n", n); 477 return (n < factorials.length) ? factorials[n] : Integer.MAX_VALUE; 478 } 479 480 private static final int[] factorials = { 481 1, 482 1, 483 1 * 2, 484 1 * 2 * 3, 485 1 * 2 * 3 * 4, 486 1 * 2 * 3 * 4 * 5, 487 1 * 2 * 3 * 4 * 5 * 6, 488 1 * 2 * 3 * 4 * 5 * 6 * 7, 489 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8, 490 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9, 491 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10, 492 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11, 493 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12}; 494 495 /** 496 * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and 497 * {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}. 498 * 499 * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n} 500 */ 501 @GwtIncompatible("need BigIntegerMath to adequately test") 502 public static int binomial(int n, int k) { 503 checkNonNegative("n", n); 504 checkNonNegative("k", k); 505 checkArgument(k <= n, "k (%s) > n (%s)", k, n); 506 if (k > (n >> 1)) { 507 k = n - k; 508 } 509 if (k >= biggestBinomials.length || n > biggestBinomials[k]) { 510 return Integer.MAX_VALUE; 511 } 512 switch (k) { 513 case 0: 514 return 1; 515 case 1: 516 return n; 517 default: 518 long result = 1; 519 for (int i = 0; i < k; i++) { 520 result *= n - i; 521 result /= i + 1; 522 } 523 return (int) result; 524 } 525 } 526 527 // binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k). 528 @VisibleForTesting static int[] biggestBinomials = { 529 Integer.MAX_VALUE, 530 Integer.MAX_VALUE, 531 65536, 532 2345, 533 477, 534 193, 535 110, 536 75, 537 58, 538 49, 539 43, 540 39, 541 37, 542 35, 543 34, 544 34, 545 33 546 }; 547 548 /** 549 * Returns the arithmetic mean of {@code x} and {@code y}, rounded towards 550 * negative infinity. This method is overflow resilient. 551 * 552 * @since 14.0 553 */ 554 public static int mean(int x, int y) { 555 // Efficient method for computing the arithmetic mean. 556 // The alternative (x + y) / 2 fails for large values. 557 // The alternative (x + y) >>> 1 fails for negative values. 558 return (x & y) + ((x ^ y) >> 1); 559 } 560 561 private IntMath() {} 562}