Class/Object

com.intel.analytics.bigdl.python.api

PythonBigDL

Related Docs: object PythonBigDL | package api

Permalink

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Permalink
  5. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Permalink
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def createAbs(): Abs[T]

    Permalink
  10. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Permalink
  11. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Permalink
  12. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Permalink
  13. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Permalink
  14. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Permalink
  15. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Permalink
  16. def createAdd(inputSize: Int): Add[T]

    Permalink
  17. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Permalink
  18. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

    Permalink
  19. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Permalink
  20. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Permalink
  21. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Permalink
  22. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Permalink
  23. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Permalink
  24. def createBilinearFiller(): BilinearFiller.type

    Permalink
  25. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Permalink
  26. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Permalink
  27. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Permalink
  28. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Permalink
  29. def createBytesToMat(byteKey: String): BytesToMat

    Permalink
  30. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Permalink
  31. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

    Permalink
  32. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Permalink
  33. def createCDivTable(): CDivTable[T]

    Permalink
  34. def createCMaxTable(): CMaxTable[T]

    Permalink
  35. def createCMinTable(): CMinTable[T]

    Permalink
  36. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Permalink
  37. def createCMulTable(): CMulTable[T]

    Permalink
  38. def createCSubTable(): CSubTable[T]

    Permalink
  39. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Permalink
  40. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Permalink
  41. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Permalink
  42. def createChannelOrder(): ChannelOrder

    Permalink
  43. def createClamp(min: Int, max: Int): Clamp[T]

    Permalink
  44. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Permalink
  45. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Permalink
  46. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Permalink
  47. def createConcat(dimension: Int): Concat[T]

    Permalink
  48. def createConcatTable(): ConcatTable[T]

    Permalink
  49. def createConstInitMethod(value: Double): ConstInitMethod

    Permalink
  50. def createContiguous(): Contiguous[T]

    Permalink
  51. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Permalink
  52. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Permalink
  53. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Permalink
  54. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Permalink
  55. def createCosineDistance(): CosineDistance[T]

    Permalink
  56. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Permalink
  57. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Permalink
  58. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Permalink
  59. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Permalink
  60. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Permalink
  61. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Permalink
  62. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

    Permalink
  63. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Permalink
  64. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  65. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Permalink
  66. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

    Permalink
  67. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  68. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Permalink
  69. def createDefault(): Default

    Permalink
  70. def createDenseToSparse(): DenseToSparse[T]

    Permalink
  71. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Permalink
  72. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Permalink
  73. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Permalink
  74. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Permalink
  75. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Permalink
  76. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  77. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  78. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Permalink
  79. def createDotProduct(): DotProduct[T]

    Permalink
  80. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

    Permalink
  81. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Permalink
  82. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Permalink
  83. def createEcho(): Echo[T]

    Permalink
  84. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Permalink
  85. def createEveryEpoch(): Trigger

    Permalink
  86. def createExp(): Exp[T]

    Permalink
  87. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Permalink
  88. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Permalink
  89. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Permalink
  90. def createFixExpand(eh: Int, ew: Int): FixExpand

    Permalink
  91. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Permalink
  92. def createFlattenTable(): FlattenTable[T]

    Permalink
  93. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

    Permalink
  94. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Permalink
  95. def createGaussianCriterion(): GaussianCriterion[T]

    Permalink
  96. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Permalink
  97. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Permalink
  98. def createGaussianSampler(): GaussianSampler[T]

    Permalink
  99. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Permalink
  100. def createHFlip(): HFlip

    Permalink
  101. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Permalink
  102. def createHardSigmoid: HardSigmoid[T]

    Permalink
  103. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Permalink
  104. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Permalink
  105. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Permalink
  106. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Permalink
  107. def createIdentity(): Identity[T]

    Permalink
  108. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Permalink
  109. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Permalink
  110. def createIndex(dimension: Int): Index[T]

    Permalink
  111. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Permalink
  112. def createInput(): ModuleNode[T]

    Permalink
  113. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Permalink
  114. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Permalink
  115. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Permalink
  116. def createL1Cost(): L1Cost[T]

    Permalink
  117. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Permalink
  118. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Permalink
  119. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Permalink
  120. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Permalink
  121. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Permalink
  122. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Permalink
  123. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Permalink
  124. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Permalink
  125. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Permalink
  126. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Permalink
  127. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Permalink
  128. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  129. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Permalink
  130. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Permalink
  131. def createLog(): Log[T]

    Permalink
  132. def createLogSigmoid(): LogSigmoid[T]

    Permalink
  133. def createLogSoftMax(): LogSoftMax[T]

    Permalink
  134. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Permalink
  135. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Permalink
  136. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Permalink
  137. def createMAE(): ValidationMethod[T]

    Permalink
  138. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Permalink
  139. def createMSECriterion: MSECriterion[T]

    Permalink
  140. def createMV(trans: Boolean = false): MV[T]

    Permalink
  141. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Permalink
  142. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Permalink
  143. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Permalink
  144. def createMaskedSelect(): MaskedSelect[T]

    Permalink
  145. def createMasking(maskValue: Double): Masking[T]

    Permalink
  146. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Permalink
  147. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Permalink
  148. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Permalink
  149. def createMaxEpoch(max: Int): Trigger

    Permalink
  150. def createMaxIteration(max: Int): Trigger

    Permalink
  151. def createMaxScore(max: Float): Trigger

    Permalink
  152. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Permalink
  153. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

    Permalink
  154. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Permalink
  155. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Permalink
  156. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Permalink
  157. def createMinLoss(min: Float): Trigger

    Permalink
  158. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Permalink
  159. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Permalink
  160. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Permalink
  161. def createMul(): Mul[T]

    Permalink
  162. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Permalink
  163. def createMultiCriterion(): MultiCriterion[T]

    Permalink
  164. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Permalink
  165. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Permalink
  166. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Permalink
  167. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Permalink
  168. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Permalink
  169. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Permalink
  170. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Permalink
  171. def createNegative(inplace: Boolean): Negative[T]

    Permalink
  172. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Permalink
  173. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Permalink
  174. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Permalink
  175. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Permalink
  176. def createOnes(): Ones.type

    Permalink
  177. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

    Permalink
  178. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Permalink
  179. def createPack(dimension: Int): Pack[T]

    Permalink
  180. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Permalink
  181. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Permalink
  182. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Permalink
  183. def createParallelTable(): ParallelTable[T]

    Permalink
  184. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Permalink
  185. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Permalink
  186. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Permalink
  187. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Permalink
  188. def createPoissonCriterion: PoissonCriterion[T]

    Permalink
  189. def createPoly(power: Double, maxIteration: Int): Poly

    Permalink
  190. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Permalink
  191. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Permalink
  192. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Permalink
  193. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Permalink
  194. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Permalink
  195. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Permalink
  196. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Permalink
  197. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Permalink
  198. def createRandomSampler(): FeatureTransformer

    Permalink
  199. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Permalink
  200. def createRandomUniform(): InitializationMethod

    Permalink
  201. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Permalink
  202. def createReLU(ip: Boolean = false): ReLU[T]

    Permalink
  203. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Permalink
  204. def createRecurrent(): Recurrent[T]

    Permalink
  205. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Permalink
  206. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Permalink
  207. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Permalink
  208. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Permalink
  209. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Permalink
  210. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Permalink
  211. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Permalink
  212. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Permalink
  213. def createRoiNormalize(): RoiNormalize

    Permalink
  214. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Permalink
  215. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Permalink
  216. def createRoiResize(normalized: Boolean): RoiResize

    Permalink
  217. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Permalink
  218. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

    Permalink
  219. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Permalink
  220. def createScale(size: List[Int]): Scale[T]

    Permalink
  221. def createSelect(dimension: Int, index: Int): Select[T]

    Permalink
  222. def createSelectTable(dimension: Int): SelectTable[T]

    Permalink
  223. def createSequential(): Container[Activity, Activity, T]

    Permalink
  224. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Permalink
  225. def createSeveralIteration(interval: Int): Trigger

    Permalink
  226. def createSigmoid(): Sigmoid[T]

    Permalink
  227. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Permalink
  228. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Permalink
  229. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Permalink
  230. def createSoftMax(): SoftMax[T]

    Permalink
  231. def createSoftMin(): SoftMin[T]

    Permalink
  232. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Permalink
  233. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Permalink
  234. def createSoftSign(): SoftSign[T]

    Permalink
  235. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Permalink
  236. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Permalink
  237. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Permalink
  238. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Permalink
  239. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Permalink
  240. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Permalink
  241. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Permalink
  242. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Permalink
  243. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Permalink
  244. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Permalink
  245. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Permalink
  246. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Permalink
  247. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Permalink
  248. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Permalink
  249. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Permalink
  250. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Permalink
  251. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

    Permalink
  252. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Permalink
  253. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Permalink
  254. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Permalink
  255. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Permalink
  256. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Permalink
  257. def createSqrt(): Sqrt[T]

    Permalink
  258. def createSquare(): Square[T]

    Permalink
  259. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Permalink
  260. def createStep(stepSize: Int, gamma: Double): Step

    Permalink
  261. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

    Permalink
  262. def createTanh(): Tanh[T]

    Permalink
  263. def createTanhShrink(): TanhShrink[T]

    Permalink
  264. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Permalink
  265. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Permalink
  266. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Permalink
  267. def createTile(dim: Int, copies: Int): Tile[T]

    Permalink
  268. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Permalink
  269. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

    Permalink
  270. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

    Permalink
  271. def createTop1Accuracy(): ValidationMethod[T]

    Permalink
  272. def createTop5Accuracy(): ValidationMethod[T]

    Permalink
  273. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Permalink
  274. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

    Permalink
  275. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Permalink
  276. def createTreeNNAccuracy(): ValidationMethod[T]

    Permalink
  277. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Permalink
  278. def createUpSampling1D(length: Int): UpSampling1D[T]

    Permalink
  279. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Permalink
  280. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Permalink
  281. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Permalink
  282. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Permalink
  283. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Permalink
  284. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Permalink
  285. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Permalink
  286. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Permalink
  287. def createWarmup(delta: Double): Warmup

    Permalink
  288. def createXavier(): Xavier.type

    Permalink
  289. def createZeros(): Zeros.type

    Permalink
  290. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Permalink
  291. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Permalink
  292. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Permalink
  293. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Permalink
  294. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Permalink
  295. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Permalink
  296. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Permalink
  297. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Permalink
  298. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Permalink
  299. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Permalink
  300. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

    Permalink
  301. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Permalink
  302. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

    Permalink
  303. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  304. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  305. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Permalink
  306. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Permalink
  307. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  308. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Permalink
  309. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Permalink
  310. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Permalink
  311. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  312. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  313. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Permalink
  314. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Permalink
  315. def getHiddenState(rec: Recurrent[T]): JActivity

    Permalink
  316. def getNodeAndCoreNumber(): Array[Int]

    Permalink
  317. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Permalink
  318. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
  319. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
  320. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Permalink
  321. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  322. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Permalink
  323. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Permalink
  324. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Permalink
  325. def initEngine(): Unit

    Permalink
  326. def isDistributed(imageFrame: ImageFrame): Boolean

    Permalink
  327. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  328. def isLocal(imageFrame: ImageFrame): Boolean

    Permalink
  329. def isWithWeights(module: Module[T]): Boolean

    Permalink
  330. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Permalink
  331. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  332. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Permalink
  333. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
  334. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Permalink
  335. def loadOptimMethod(path: String): OptimMethod[T]

    Permalink
  336. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
  337. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  338. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Permalink
  339. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Permalink
  340. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Permalink
  341. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Permalink
  342. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Permalink
  343. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Permalink
  344. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
  345. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
  346. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Permalink
  347. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Permalink
  348. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Permalink
  349. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Permalink
  350. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

    Permalink
  351. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
  352. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  353. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  354. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  355. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

    Permalink
  356. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Permalink
  357. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Permalink
  358. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Permalink
  359. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Permalink
  360. def redirectSparkLogs(logPath: String): Unit

    Permalink
  361. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Permalink
  362. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Permalink
  363. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Permalink
  364. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Permalink
  365. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Permalink
  366. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Permalink

    Save tensor dictionary to a Java hashmap object file

  367. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Permalink
  368. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Permalink
  369. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Permalink
  370. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Permalink
  371. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Permalink
  372. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Permalink
  373. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Permalink
  374. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Permalink
  375. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  376. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  377. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Permalink
  378. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Permalink
  379. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Permalink
  380. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Permalink
  381. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Permalink
  382. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Permalink
  383. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Permalink
  384. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Permalink
  385. def setModelSeed(seed: Long): Unit

    Permalink
  386. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
  387. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
  388. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Permalink
  389. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Permalink
  390. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Permalink
  391. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Permalink
  392. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  393. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  394. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  395. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Permalink
  396. def showBigDlInfoLogs(): Unit

    Permalink
  397. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Permalink
  398. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Permalink
  399. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  400. def testSample(sample: Sample): Sample

    Permalink
  401. def testTensor(jTensor: JTensor): JTensor

    Permalink
  402. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Permalink
  403. def toJSample(record: Sample): dataset.Sample[T]

    Permalink
  404. def toJTensor(tensor: Tensor[T]): JTensor

    Permalink
  405. def toPySample(sample: dataset.Sample[T]): Sample

    Permalink
  406. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

    Permalink
  407. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  408. def toTensor(jTensor: JTensor): Tensor[T]

    Permalink
  409. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Permalink
  410. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Permalink
  411. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Permalink
  412. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  413. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Permalink
  414. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Permalink
  415. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  416. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  417. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  418. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

    Permalink

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped