Class/Object

com.intel.analytics.bigdl.python.api

PythonBigDL

Related Docs: object PythonBigDL | package api

Permalink

class PythonBigDL[T] extends Serializable

Implementation of Python API for BigDL

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PythonBigDL
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PythonBigDL()(implicit arg0: ClassTag[T], ev: TensorNumeric[T])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def activityToJTensors(outputActivity: Activity): List[JTensor]

    Permalink
  5. def addScheduler(seq: SequentialSchedule, scheduler: LearningRateSchedule, maxIteration: Int): SequentialSchedule

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def batching(dataset: DataSet[dataset.Sample[T]], batchSize: Int): DataSet[MiniBatch[T]]

    Permalink
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def createAbs(): Abs[T]

    Permalink
  10. def createAbsCriterion(sizeAverage: Boolean = true): AbsCriterion[T]

    Permalink
  11. def createActivityRegularization(l1: Double, l2: Double): ActivityRegularization[T]

    Permalink
  12. def createAdadelta(decayRate: Double = 0.9, Epsilon: Double = 1e-10): Adadelta[T]

    Permalink
  13. def createAdagrad(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0): Adagrad[T]

    Permalink
  14. def createAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8): Adam[T]

    Permalink
  15. def createAdamax(learningRate: Double = 0.002, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-38): Adamax[T]

    Permalink
  16. def createAdd(inputSize: Int): Add[T]

    Permalink
  17. def createAddConstant(constant_scalar: Double, inplace: Boolean = false): AddConstant[T]

    Permalink
  18. def createAspectScale(scale: Int, scaleMultipleOf: Int, maxSize: Int, resizeMode: Int = 1, useScaleFactor: Boolean = true, minScale: Double = 1): FeatureTransformer

    Permalink
  19. def createAttention(hiddenSize: Int, numHeads: Int, attentionDropout: Float): Attention[T]

    Permalink
  20. def createBCECriterion(weights: JTensor = null, sizeAverage: Boolean = true): BCECriterion[T]

    Permalink
  21. def createBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): BatchNormalization[T]

    Permalink
  22. def createBiRecurrent(merge: AbstractModule[Table, Tensor[T], T] = null): BiRecurrent[T]

    Permalink
  23. def createBifurcateSplitTable(dimension: Int): BifurcateSplitTable[T]

    Permalink
  24. def createBilinear(inputSize1: Int, inputSize2: Int, outputSize: Int, biasRes: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Bilinear[T]

    Permalink
  25. def createBilinearFiller(): BilinearFiller.type

    Permalink
  26. def createBinaryThreshold(th: Double, ip: Boolean): BinaryThreshold[T]

    Permalink
  27. def createBinaryTreeLSTM(inputSize: Int, hiddenSize: Int, gateOutput: Boolean = true, withGraph: Boolean = true): BinaryTreeLSTM[T]

    Permalink
  28. def createBottle(module: AbstractModule[Activity, Activity, T], nInputDim: Int = 2, nOutputDim1: Int = Int.MaxValue): Bottle[T]

    Permalink
  29. def createBrightness(deltaLow: Double, deltaHigh: Double): Brightness

    Permalink
  30. def createBytesToMat(byteKey: String): BytesToMat

    Permalink
  31. def createCAdd(size: List[Int], bRegularizer: Regularizer[T] = null): CAdd[T]

    Permalink
  32. def createCAddTable(inplace: Boolean = false): CAddTable[T, T]

    Permalink
  33. def createCAveTable(inplace: Boolean = false): CAveTable[T]

    Permalink
  34. def createCDivTable(): CDivTable[T]

    Permalink
  35. def createCMaxTable(): CMaxTable[T]

    Permalink
  36. def createCMinTable(): CMinTable[T]

    Permalink
  37. def createCMul(size: List[Int], wRegularizer: Regularizer[T] = null): CMul[T]

    Permalink
  38. def createCMulTable(): CMulTable[T]

    Permalink
  39. def createCSubTable(): CSubTable[T]

    Permalink
  40. def createCategoricalCrossEntropy(): CategoricalCrossEntropy[T]

    Permalink
  41. def createCenterCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): CenterCrop

    Permalink
  42. def createChannelNormalize(meanR: Double, meanG: Double, meanB: Double, stdR: Double = 1, stdG: Double = 1, stdB: Double = 1): FeatureTransformer

    Permalink
  43. def createChannelOrder(): ChannelOrder

    Permalink
  44. def createChannelScaledNormalizer(meanR: Int, meanG: Int, meanB: Int, scale: Double): ChannelScaledNormalizer

    Permalink
  45. def createClamp(min: Int, max: Int): Clamp[T]

    Permalink
  46. def createClassNLLCriterion(weights: JTensor = null, sizeAverage: Boolean = true, logProbAsInput: Boolean = true): ClassNLLCriterion[T]

    Permalink
  47. def createClassSimplexCriterion(nClasses: Int): ClassSimplexCriterion[T]

    Permalink
  48. def createColorJitter(brightnessProb: Double = 0.5, brightnessDelta: Double = 32, contrastProb: Double = 0.5, contrastLower: Double = 0.5, contrastUpper: Double = 1.5, hueProb: Double = 0.5, hueDelta: Double = 18, saturationProb: Double = 0.5, saturationLower: Double = 0.5, saturationUpper: Double = 1.5, randomOrderProb: Double = 0, shuffle: Boolean = false): ColorJitter

    Permalink
  49. def createConcat(dimension: Int): Concat[T]

    Permalink
  50. def createConcatTable(): ConcatTable[T]

    Permalink
  51. def createConstInitMethod(value: Double): ConstInitMethod

    Permalink
  52. def createContiguous(): Contiguous[T]

    Permalink
  53. def createContrast(deltaLow: Double, deltaHigh: Double): Contrast

    Permalink
  54. def createConvLSTMPeephole(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole[T]

    Permalink
  55. def createConvLSTMPeephole3D(inputSize: Int, outputSize: Int, kernelI: Int, kernelC: Int, stride: Int = 1, padding: Int = 1, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, cRegularizer: Regularizer[T] = null, withPeephole: Boolean = true): ConvLSTMPeephole3D[T]

    Permalink
  56. def createCosine(inputSize: Int, outputSize: Int): Cosine[T]

    Permalink
  57. def createCosineDistance(): CosineDistance[T]

    Permalink
  58. def createCosineDistanceCriterion(sizeAverage: Boolean = true): CosineDistanceCriterion[T]

    Permalink
  59. def createCosineEmbeddingCriterion(margin: Double = 0.0, sizeAverage: Boolean = true): CosineEmbeddingCriterion[T]

    Permalink
  60. def createCosineProximityCriterion(): CosineProximityCriterion[T]

    Permalink
  61. def createCropping2D(heightCrop: List[Int], widthCrop: List[Int], dataFormat: String = "NCHW"): Cropping2D[T]

    Permalink
  62. def createCropping3D(dim1Crop: List[Int], dim2Crop: List[Int], dim3Crop: List[Int], dataFormat: String = Cropping3D.CHANNEL_FIRST): Cropping3D[T]

    Permalink
  63. def createCrossEntropyCriterion(weights: JTensor = null, sizeAverage: Boolean = true): CrossEntropyCriterion[T]

    Permalink
  64. def createCrossProduct(numTensor: Int = 0, embeddingSize: Int = 0): CrossProduct[T]

    Permalink
  65. def createDLClassifier(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLClassifier[T]

    Permalink
  66. def createDLClassifierModel(model: Module[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  67. def createDLEstimator(model: Module[T], criterion: Criterion[T], featureSize: ArrayList[Int], labelSize: ArrayList[Int]): DLEstimator[T]

    Permalink
  68. def createDLImageTransformer(transformer: FeatureTransformer): DLImageTransformer

    Permalink
  69. def createDLModel(model: Module[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  70. def createDatasetFromImageFrame(imageFrame: ImageFrame): DataSet[ImageFeature]

    Permalink
  71. def createDefault(): Default

    Permalink
  72. def createDenseToSparse(): DenseToSparse[T]

    Permalink
  73. def createDetectionCrop(roiKey: String, normalized: Boolean): DetectionCrop

    Permalink
  74. def createDetectionOutputFrcnn(nmsThresh: Float = 0.3f, nClasses: Int, bboxVote: Boolean, maxPerImage: Int = 100, thresh: Double = 0.05): DetectionOutputFrcnn

    Permalink
  75. def createDetectionOutputSSD(nClasses: Int, shareLocation: Boolean, bgLabel: Int, nmsThresh: Double, nmsTopk: Int, keepTopK: Int, confThresh: Double, varianceEncodedInTarget: Boolean, confPostProcess: Boolean): DetectionOutputSSD[T]

    Permalink
  76. def createDiceCoefficientCriterion(sizeAverage: Boolean = true, epsilon: Float = 1.0f): DiceCoefficientCriterion[T]

    Permalink
  77. def createDistKLDivCriterion(sizeAverage: Boolean = true): DistKLDivCriterion[T]

    Permalink
  78. def createDistriOptimizer(model: AbstractModule[Activity, Activity, T], trainingRdd: JavaRDD[Sample], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  79. def createDistriOptimizerFromDataSet(model: AbstractModule[Activity, Activity, T], trainDataSet: DataSet[ImageFeature], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  80. def createDistributedImageFrame(imageRdd: JavaRDD[JTensor], labelRdd: JavaRDD[JTensor]): DistributedImageFrame

    Permalink
  81. def createDotProduct(): DotProduct[T]

    Permalink
  82. def createDotProductCriterion(sizeAverage: Boolean = false): DotProductCriterion[T]

    Permalink
  83. def createDropout(initP: Double = 0.5, inplace: Boolean = false, scale: Boolean = true): Dropout[T]

    Permalink
  84. def createELU(alpha: Double = 1.0, inplace: Boolean = false): ELU[T]

    Permalink
  85. def createEcho(): Echo[T]

    Permalink
  86. def createEuclidean(inputSize: Int, outputSize: Int, fastBackward: Boolean = true): Euclidean[T]

    Permalink
  87. def createEveryEpoch(): Trigger

    Permalink
  88. def createExp(): Exp[T]

    Permalink
  89. def createExpand(meansR: Int = 123, meansG: Int = 117, meansB: Int = 104, minExpandRatio: Double = 1.0, maxExpandRatio: Double = 4.0): Expand

    Permalink
  90. def createExpandSize(targetSizes: List[Int]): ExpandSize[T]

    Permalink
  91. def createExponential(decayStep: Int, decayRate: Double, stairCase: Boolean = false): Exponential

    Permalink
  92. def createFeedForwardNetwork(hiddenSize: Int, filterSize: Int, reluDropout: Float): FeedForwardNetwork[T]

    Permalink
  93. def createFiller(startX: Double, startY: Double, endX: Double, endY: Double, value: Int = 255): Filler

    Permalink
  94. def createFixExpand(eh: Int, ew: Int): FixExpand

    Permalink
  95. def createFixedCrop(wStart: Double, hStart: Double, wEnd: Double, hEnd: Double, normalized: Boolean, isClip: Boolean): FixedCrop

    Permalink
  96. def createFlattenTable(): FlattenTable[T]

    Permalink
  97. def createFtrl(learningRate: Double = 1e-3, learningRatePower: Double = 0.5, initialAccumulatorValue: Double = 0.1, l1RegularizationStrength: Double = 0.0, l2RegularizationStrength: Double = 0.0, l2ShrinkageRegularizationStrength: Double = 0.0): Ftrl[T]

    Permalink
  98. def createGRU(inputSize: Int, outputSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): GRU[T]

    Permalink
  99. def createGaussianCriterion(): GaussianCriterion[T]

    Permalink
  100. def createGaussianDropout(rate: Double): GaussianDropout[T]

    Permalink
  101. def createGaussianNoise(stddev: Double): GaussianNoise[T]

    Permalink
  102. def createGaussianSampler(): GaussianSampler[T]

    Permalink
  103. def createGradientReversal(lambda: Double = 1): GradientReversal[T]

    Permalink
  104. def createHFlip(): HFlip

    Permalink
  105. def createHardShrink(lambda: Double = 0.5): HardShrink[T]

    Permalink
  106. def createHardSigmoid: HardSigmoid[T]

    Permalink
  107. def createHardTanh(minValue: Double = 1, maxValue: Double = 1, inplace: Boolean = false): HardTanh[T]

    Permalink
  108. def createHighway(size: Int, withBias: Boolean, activation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): Graph[T]

    Permalink
  109. def createHingeEmbeddingCriterion(margin: Double = 1, sizeAverage: Boolean = true): HingeEmbeddingCriterion[T]

    Permalink
  110. def createHitRatio(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Permalink
  111. def createHue(deltaLow: Double, deltaHigh: Double): Hue

    Permalink
  112. def createIdentity(): Identity[T]

    Permalink
  113. def createImageFeature(data: JTensor = null, label: JTensor = null, uri: String = null): ImageFeature

    Permalink
  114. def createImageFrameToSample(inputKeys: List[String], targetKeys: List[String], sampleKey: String): ImageFrameToSample[T]

    Permalink
  115. def createIndex(dimension: Int): Index[T]

    Permalink
  116. def createInferReshape(size: List[Int], batchMode: Boolean = false): InferReshape[T]

    Permalink
  117. def createInput(): ModuleNode[T]

    Permalink
  118. def createJoinTable(dimension: Int, nInputDims: Int): JoinTable[T]

    Permalink
  119. def createKLDCriterion(sizeAverage: Boolean): KLDCriterion[T]

    Permalink
  120. def createKullbackLeiblerDivergenceCriterion: KullbackLeiblerDivergenceCriterion[T]

    Permalink
  121. def createL1Cost(): L1Cost[T]

    Permalink
  122. def createL1HingeEmbeddingCriterion(margin: Double = 1): L1HingeEmbeddingCriterion[T]

    Permalink
  123. def createL1L2Regularizer(l1: Double, l2: Double): L1L2Regularizer[T]

    Permalink
  124. def createL1Penalty(l1weight: Int, sizeAverage: Boolean = false, provideOutput: Boolean = true): L1Penalty[T]

    Permalink
  125. def createL1Regularizer(l1: Double): L1Regularizer[T]

    Permalink
  126. def createL2Regularizer(l2: Double): L2Regularizer[T]

    Permalink
  127. def createLBFGS(maxIter: Int = 20, maxEval: Double = Double.MaxValue, tolFun: Double = 1e-5, tolX: Double = 1e-9, nCorrection: Int = 100, learningRate: Double = 1.0, verbose: Boolean = false, lineSearch: LineSearch[T] = null, lineSearchOptions: Map[Any, Any] = null): LBFGS[T]

    Permalink
  128. def createLSTM(inputSize: Int, hiddenSize: Int, p: Double = 0, activation: TensorModule[T] = null, innerActivation: TensorModule[T] = null, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTM[T]

    Permalink
  129. def createLSTMPeephole(inputSize: Int, hiddenSize: Int, p: Double = 0, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): LSTMPeephole[T]

    Permalink
  130. def createLayerNormalization(hiddenSize: Int): LayerNormalization[T]

    Permalink
  131. def createLeakyReLU(negval: Double = 0.01, inplace: Boolean = false): LeakyReLU[T]

    Permalink
  132. def createLinear(inputSize: Int, outputSize: Int, withBias: Boolean, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): Linear[T]

    Permalink
  133. def createLocalImageFrame(images: List[JTensor], labels: List[JTensor]): LocalImageFrame

    Permalink
  134. def createLocalOptimizer(features: List[JTensor], y: JTensor, model: AbstractModule[Activity, Activity, T], criterion: Criterion[T], optimMethod: Map[String, OptimMethod[T]], endTrigger: Trigger, batchSize: Int, localCores: Int): Optimizer[T, MiniBatch[T]]

    Permalink
  135. def createLocallyConnected1D(nInputFrame: Int, inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): LocallyConnected1D[T]

    Permalink
  136. def createLocallyConnected2D(nInputPlane: Int, inputWidth: Int, inputHeight: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): LocallyConnected2D[T]

    Permalink
  137. def createLog(): Log[T]

    Permalink
  138. def createLogSigmoid(): LogSigmoid[T]

    Permalink
  139. def createLogSoftMax(): LogSoftMax[T]

    Permalink
  140. def createLookupTable(nIndex: Int, nOutput: Int, paddingValue: Double = 0, maxNorm: Double = Double.MaxValue, normType: Double = 2.0, shouldScaleGradByFreq: Boolean = false, wRegularizer: Regularizer[T] = null): LookupTable[T]

    Permalink
  141. def createLookupTableSparse(nIndex: Int, nOutput: Int, combiner: String = "sum", maxNorm: Double = 1, wRegularizer: Regularizer[T] = null): LookupTableSparse[T]

    Permalink
  142. def createLoss(criterion: Criterion[T]): ValidationMethod[T]

    Permalink
  143. def createMAE(): ValidationMethod[T]

    Permalink
  144. def createMM(transA: Boolean = false, transB: Boolean = false): MM[T]

    Permalink
  145. def createMSECriterion: MSECriterion[T]

    Permalink
  146. def createMV(trans: Boolean = false): MV[T]

    Permalink
  147. def createMapTable(module: AbstractModule[Activity, Activity, T] = null): MapTable[T]

    Permalink
  148. def createMarginCriterion(margin: Double = 1.0, sizeAverage: Boolean = true, squared: Boolean = false): MarginCriterion[T]

    Permalink
  149. def createMarginRankingCriterion(margin: Double = 1.0, sizeAverage: Boolean = true): MarginRankingCriterion[T]

    Permalink
  150. def createMaskedSelect(): MaskedSelect[T]

    Permalink
  151. def createMasking(maskValue: Double): Masking[T]

    Permalink
  152. def createMatToFloats(validHeight: Int = 300, validWidth: Int = 300, validChannels: Int = 3, outKey: String = ImageFeature.floats, shareBuffer: Boolean = true): MatToFloats

    Permalink
  153. def createMatToTensor(toRGB: Boolean = false, tensorKey: String = ImageFeature.imageTensor): MatToTensor[T]

    Permalink
  154. def createMax(dim: Int = 1, numInputDims: Int = Int.MinValue): Max[T]

    Permalink
  155. def createMaxEpoch(max: Int): Trigger

    Permalink
  156. def createMaxIteration(max: Int): Trigger

    Permalink
  157. def createMaxScore(max: Float): Trigger

    Permalink
  158. def createMaxout(inputSize: Int, outputSize: Int, maxoutNumber: Int, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: Tensor[T] = null, initBias: Tensor[T] = null): Maxout[T]

    Permalink
  159. def createMean(dimension: Int = 1, nInputDims: Int = 1, squeeze: Boolean = true): Mean[T]

    Permalink
  160. def createMeanAbsolutePercentageCriterion: MeanAbsolutePercentageCriterion[T]

    Permalink
  161. def createMeanSquaredLogarithmicCriterion: MeanSquaredLogarithmicCriterion[T]

    Permalink
  162. def createMin(dim: Int = 1, numInputDims: Int = Int.MinValue): Min[T]

    Permalink
  163. def createMinLoss(min: Float): Trigger

    Permalink
  164. def createMixtureTable(dim: Int = Int.MaxValue): MixtureTable[T]

    Permalink
  165. def createModel(input: List[ModuleNode[T]], output: List[ModuleNode[T]]): Graph[T]

    Permalink
  166. def createModelPreprocessor(preprocessor: AbstractModule[Activity, Activity, T], trainable: AbstractModule[Activity, Activity, T]): Graph[T]

    Permalink
  167. def createMsraFiller(varianceNormAverage: Boolean = true): MsraFiller

    Permalink
  168. def createMul(): Mul[T]

    Permalink
  169. def createMulConstant(scalar: Double, inplace: Boolean = false): MulConstant[T]

    Permalink
  170. def createMultiCriterion(): MultiCriterion[T]

    Permalink
  171. def createMultiLabelMarginCriterion(sizeAverage: Boolean = true): MultiLabelMarginCriterion[T]

    Permalink
  172. def createMultiLabelSoftMarginCriterion(weights: JTensor = null, sizeAverage: Boolean = true): MultiLabelSoftMarginCriterion[T]

    Permalink
  173. def createMultiMarginCriterion(p: Int = 1, weights: JTensor = null, margin: Double = 1.0, sizeAverage: Boolean = true): MultiMarginCriterion[T]

    Permalink
  174. def createMultiRNNCell(cells: List[Cell[T]]): MultiRNNCell[T]

    Permalink
  175. def createMultiStep(stepSizes: List[Int], gamma: Double): MultiStep

    Permalink
  176. def createNDCG(k: Int = 10, negNum: Int = 100): ValidationMethod[T]

    Permalink
  177. def createNarrow(dimension: Int, offset: Int, length: Int = 1): Narrow[T]

    Permalink
  178. def createNarrowTable(offset: Int, length: Int = 1): NarrowTable[T]

    Permalink
  179. def createNegative(inplace: Boolean): Negative[T]

    Permalink
  180. def createNegativeEntropyPenalty(beta: Double): NegativeEntropyPenalty[T]

    Permalink
  181. def createNode(module: AbstractModule[Activity, Activity, T], x: List[ModuleNode[T]]): ModuleNode[T]

    Permalink
  182. def createNormalize(p: Double, eps: Double = 1e-10): Normalize[T]

    Permalink
  183. def createNormalizeScale(p: Double, eps: Double = 1e-10, scale: Double, size: List[Int], wRegularizer: Regularizer[T] = null): NormalizeScale[T]

    Permalink
  184. def createOnes(): Ones.type

    Permalink
  185. def createPGCriterion(sizeAverage: Boolean = false): PGCriterion[T]

    Permalink
  186. def createPReLU(nOutputPlane: Int = 0): PReLU[T]

    Permalink
  187. def createPack(dimension: Int): Pack[T]

    Permalink
  188. def createPadding(dim: Int, pad: Int, nInputDim: Int, value: Double = 0.0, nIndex: Int = 1): Padding[T]

    Permalink
  189. def createPairwiseDistance(norm: Int = 2): PairwiseDistance[T]

    Permalink
  190. def createParallelAdam(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, beta1: Double = 0.9, beta2: Double = 0.999, Epsilon: Double = 1e-8, parallelNum: Int = Engine.coreNumber()): ParallelAdam[T]

    Permalink
  191. def createParallelCriterion(repeatTarget: Boolean = false): ParallelCriterion[T]

    Permalink
  192. def createParallelTable(): ParallelTable[T]

    Permalink
  193. def createPipeline(list: List[FeatureTransformer]): FeatureTransformer

    Permalink
  194. def createPixelBytesToMat(byteKey: String): PixelBytesToMat

    Permalink
  195. def createPixelNormalize(means: List[Double]): PixelNormalizer

    Permalink
  196. def createPlateau(monitor: String, factor: Float = 0.1f, patience: Int = 10, mode: String = "min", epsilon: Float = 1e-4f, cooldown: Int = 0, minLr: Float = 0): Plateau

    Permalink
  197. def createPoissonCriterion: PoissonCriterion[T]

    Permalink
  198. def createPoly(power: Double, maxIteration: Int): Poly

    Permalink
  199. def createPower(power: Double, scale: Double = 1, shift: Double = 0): Power[T]

    Permalink
  200. def createPriorBox(minSizes: List[Double], maxSizes: List[Double] = null, aspectRatios: List[Double] = null, isFlip: Boolean = true, isClip: Boolean = false, variances: List[Double] = null, offset: Float = 0.5f, imgH: Int = 0, imgW: Int = 0, imgSize: Int = 0, stepH: Float = 0, stepW: Float = 0, step: Float = 0): PriorBox[T]

    Permalink
  201. def createProposal(preNmsTopN: Int, postNmsTopN: Int, ratios: List[Double], scales: List[Double], rpnPreNmsTopNTrain: Int = 12000, rpnPostNmsTopNTrain: Int = 2000): Proposal

    Permalink
  202. def createRMSprop(learningRate: Double = 1e-2, learningRateDecay: Double = 0.0, decayRate: Double = 0.99, Epsilon: Double = 1e-8): RMSprop[T]

    Permalink
  203. def createRReLU(lower: Double = 1.0 / 8, upper: Double = 1.0 / 3, inplace: Boolean = false): RReLU[T]

    Permalink
  204. def createRandomAlterAspect(min_area_ratio: Float, max_area_ratio: Int, min_aspect_ratio_change: Float, interp_mode: String, cropLength: Int): RandomAlterAspect

    Permalink
  205. def createRandomAspectScale(scales: List[Int], scaleMultipleOf: Int = 1, maxSize: Int = 1000): RandomAspectScale

    Permalink
  206. def createRandomCrop(cropWidth: Int, cropHeight: Int, isClip: Boolean): RandomCrop

    Permalink
  207. def createRandomCropper(cropWidth: Int, cropHeight: Int, mirror: Boolean, cropperMethod: String, channels: Int): RandomCropper

    Permalink
  208. def createRandomNormal(mean: Double, stdv: Double): RandomNormal

    Permalink
  209. def createRandomResize(minSize: Int, maxSize: Int): RandomResize

    Permalink
  210. def createRandomSampler(): FeatureTransformer

    Permalink
  211. def createRandomTransformer(transformer: FeatureTransformer, prob: Double): RandomTransformer

    Permalink
  212. def createRandomUniform(): InitializationMethod

    Permalink
  213. def createRandomUniform(lower: Double, upper: Double): InitializationMethod

    Permalink
  214. def createReLU(ip: Boolean = false): ReLU[T]

    Permalink
  215. def createReLU6(inplace: Boolean = false): ReLU6[T]

    Permalink
  216. def createRecurrent(): Recurrent[T]

    Permalink
  217. def createRecurrentDecoder(outputLength: Int): RecurrentDecoder[T]

    Permalink
  218. def createReplicate(nFeatures: Int, dim: Int = 1, nDim: Int = Int.MaxValue): Replicate[T]

    Permalink
  219. def createReshape(size: List[Int], batchMode: Boolean = null): Reshape[T]

    Permalink
  220. def createResize(resizeH: Int, resizeW: Int, resizeMode: Int = Imgproc.INTER_LINEAR, useScaleFactor: Boolean): Resize

    Permalink
  221. def createResizeBilinear(outputHeight: Int, outputWidth: Int, alignCorner: Boolean, dataFormat: String): ResizeBilinear[T]

    Permalink
  222. def createReverse(dimension: Int = 1, isInplace: Boolean = false): Reverse[T]

    Permalink
  223. def createRnnCell(inputSize: Int, hiddenSize: Int, activation: TensorModule[T], isInputWithBias: Boolean = true, isHiddenWithBias: Boolean = true, wRegularizer: Regularizer[T] = null, uRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): RnnCell[T]

    Permalink
  224. def createRoiHFlip(normalized: Boolean = true): RoiHFlip

    Permalink
  225. def createRoiNormalize(): RoiNormalize

    Permalink
  226. def createRoiPooling(pooled_w: Int, pooled_h: Int, spatial_scale: Double): RoiPooling[T]

    Permalink
  227. def createRoiProject(needMeetCenterConstraint: Boolean): RoiProject

    Permalink
  228. def createRoiResize(normalized: Boolean): RoiResize

    Permalink
  229. def createSGD(learningRate: Double = 1e-3, learningRateDecay: Double = 0.0, weightDecay: Double = 0.0, momentum: Double = 0.0, dampening: Double = Double.MaxValue, nesterov: Boolean = false, leaningRateSchedule: LearningRateSchedule = SGD.Default(), learningRates: JTensor = null, weightDecays: JTensor = null): SGD[T]

    Permalink
  230. def createSReLU(shape: ArrayList[Int], shareAxes: ArrayList[Int] = null): SReLU[T]

    Permalink
  231. def createSaturation(deltaLow: Double, deltaHigh: Double): Saturation

    Permalink
  232. def createScale(size: List[Int]): Scale[T]

    Permalink
  233. def createSelect(dimension: Int, index: Int): Select[T]

    Permalink
  234. def createSelectTable(dimension: Int): SelectTable[T]

    Permalink
  235. def createSequenceBeamSearch(vocabSize: Int, beamSize: Int, alpha: Float, decodeLength: Int, eosId: Float, paddingValue: Float, numHiddenLayers: Int, hiddenSize: Int): SequenceBeamSearch[T]

    Permalink
  236. def createSequential(): Container[Activity, Activity, T]

    Permalink
  237. def createSequentialSchedule(iterationPerEpoch: Int): SequentialSchedule

    Permalink
  238. def createSeveralIteration(interval: Int): Trigger

    Permalink
  239. def createSigmoid(): Sigmoid[T]

    Permalink
  240. def createSmoothL1Criterion(sizeAverage: Boolean = true): SmoothL1Criterion[T]

    Permalink
  241. def createSmoothL1CriterionWithWeights(sigma: Double, num: Int = 0): SmoothL1CriterionWithWeights[T]

    Permalink
  242. def createSoftMarginCriterion(sizeAverage: Boolean = true): SoftMarginCriterion[T]

    Permalink
  243. def createSoftMax(): SoftMax[T]

    Permalink
  244. def createSoftMin(): SoftMin[T]

    Permalink
  245. def createSoftPlus(beta: Double = 1.0): SoftPlus[T]

    Permalink
  246. def createSoftShrink(lambda: Double = 0.5): SoftShrink[T]

    Permalink
  247. def createSoftSign(): SoftSign[T]

    Permalink
  248. def createSoftmaxWithCriterion(ignoreLabel: Integer = null, normalizeMode: String = "VALID"): SoftmaxWithCriterion[T]

    Permalink
  249. def createSparseJoinTable(dimension: Int): SparseJoinTable[T]

    Permalink
  250. def createSparseLinear(inputSize: Int, outputSize: Int, withBias: Boolean, backwardStart: Int = 1, backwardLength: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): SparseLinear[T]

    Permalink
  251. def createSpatialAveragePooling(kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, globalPooling: Boolean = false, ceilMode: Boolean = false, countIncludePad: Boolean = true, divide: Boolean = true, format: String = "NCHW"): SpatialAveragePooling[T]

    Permalink
  252. def createSpatialBatchNormalization(nOutput: Int, eps: Double = 1e-5, momentum: Double = 0.1, affine: Boolean = true, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, dataFormat: String = "NCHW"): SpatialBatchNormalization[T]

    Permalink
  253. def createSpatialContrastiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialContrastiveNormalization[T]

    Permalink
  254. def createSpatialConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true, dataFormat: String = "NCHW"): SpatialConvolution[T]

    Permalink
  255. def createSpatialConvolutionMap(connTable: JTensor, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialConvolutionMap[T]

    Permalink
  256. def createSpatialCrossMapLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0, dataFormat: String = "NCHW"): SpatialCrossMapLRN[T]

    Permalink
  257. def createSpatialDilatedConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, dilationW: Int = 1, dilationH: Int = 1, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialDilatedConvolution[T]

    Permalink
  258. def createSpatialDivisiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null, threshold: Double = 1e-4, thresval: Double = 1e-4): SpatialDivisiveNormalization[T]

    Permalink
  259. def createSpatialDropout1D(initP: Double = 0.5): SpatialDropout1D[T]

    Permalink
  260. def createSpatialDropout2D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout2D[T]

    Permalink
  261. def createSpatialDropout3D(initP: Double = 0.5, dataFormat: String = "NCHW"): SpatialDropout3D[T]

    Permalink
  262. def createSpatialFullConvolution(nInputPlane: Int, nOutputPlane: Int, kW: Int, kH: Int, dW: Int = 1, dH: Int = 1, padW: Int = 0, padH: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): SpatialFullConvolution[T]

    Permalink
  263. def createSpatialMaxPooling(kW: Int, kH: Int, dW: Int, dH: Int, padW: Int = 0, padH: Int = 0, ceilMode: Boolean = false, format: String = "NCHW"): SpatialMaxPooling[T]

    Permalink
  264. def createSpatialSeparableConvolution(nInputChannel: Int, nOutputChannel: Int, depthMultiplier: Int, kW: Int, kH: Int, sW: Int = 1, sH: Int = 1, pW: Int = 0, pH: Int = 0, withBias: Boolean = true, dataFormat: String = "NCHW", wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, pRegularizer: Regularizer[T] = null): SpatialSeparableConvolution[T]

    Permalink
  265. def createSpatialShareConvolution(nInputPlane: Int, nOutputPlane: Int, kernelW: Int, kernelH: Int, strideW: Int = 1, strideH: Int = 1, padW: Int = 0, padH: Int = 0, nGroup: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null, withBias: Boolean = true): SpatialShareConvolution[T]

    Permalink
  266. def createSpatialSubtractiveNormalization(nInputPlane: Int = 1, kernel: JTensor = null): SpatialSubtractiveNormalization[T]

    Permalink
  267. def createSpatialWithinChannelLRN(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75): SpatialWithinChannelLRN[T]

    Permalink
  268. def createSpatialZeroPadding(padLeft: Int, padRight: Int, padTop: Int, padBottom: Int): SpatialZeroPadding[T]

    Permalink
  269. def createSplitTable(dimension: Int, nInputDims: Int = 1): SplitTable[T]

    Permalink
  270. def createSqrt(): Sqrt[T]

    Permalink
  271. def createSquare(): Square[T]

    Permalink
  272. def createSqueeze(dim: Int = Int.MinValue, numInputDims: Int = Int.MinValue): Squeeze[T]

    Permalink
  273. def createStep(stepSize: Int, gamma: Double): Step

    Permalink
  274. def createSum(dimension: Int = 1, nInputDims: Int = 1, sizeAverage: Boolean = false, squeeze: Boolean = true): Sum[T]

    Permalink
  275. def createTableOperation(operationLayer: AbstractModule[Table, Tensor[T], T]): TableOperation[T]

    Permalink
  276. def createTanh(): Tanh[T]

    Permalink
  277. def createTanhShrink(): TanhShrink[T]

    Permalink
  278. def createTemporalConvolution(inputFrameSize: Int, outputFrameSize: Int, kernelW: Int, strideW: Int = 1, propagateBack: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null, initWeight: JTensor = null, initBias: JTensor = null, initGradWeight: JTensor = null, initGradBias: JTensor = null): TemporalConvolution[T]

    Permalink
  279. def createTemporalMaxPooling(kW: Int, dW: Int): TemporalMaxPooling[T]

    Permalink
  280. def createThreshold(th: Double = 1e-6, v: Double = 0.0, ip: Boolean = false): Threshold[T]

    Permalink
  281. def createTile(dim: Int, copies: Int): Tile[T]

    Permalink
  282. def createTimeDistributed(layer: TensorModule[T]): TimeDistributed[T]

    Permalink
  283. def createTimeDistributedCriterion(critrn: TensorCriterion[T], sizeAverage: Boolean = false): TimeDistributedCriterion[T]

    Permalink
  284. def createTimeDistributedMaskCriterion(critrn: TensorCriterion[T], paddingValue: Int = 0): TimeDistributedMaskCriterion[T]

    Permalink
  285. def createTop1Accuracy(): ValidationMethod[T]

    Permalink
  286. def createTop5Accuracy(): ValidationMethod[T]

    Permalink
  287. def createTrainSummary(logDir: String, appName: String): TrainSummary

    Permalink
  288. def createTransformer(vocabSize: Int, hiddenSize: Int, numHeads: Int, filterSize: Int, numHiddenlayers: Int, postprocessDropout: Double, attentionDropout: Double, reluDropout: Double): Transformer[T]

    Permalink
  289. def createTransformerCriterion(criterion: AbstractCriterion[Activity, Activity, T], inputTransformer: AbstractModule[Activity, Activity, T] = null, targetTransformer: AbstractModule[Activity, Activity, T] = null): TransformerCriterion[T]

    Permalink
  290. def createTranspose(permutations: List[List[Int]]): Transpose[T]

    Permalink
  291. def createTreeNNAccuracy(): ValidationMethod[T]

    Permalink
  292. def createTriggerAnd(first: Trigger, others: List[Trigger]): Trigger

    Permalink
  293. def createTriggerOr(first: Trigger, others: List[Trigger]): Trigger

    Permalink
  294. def createUnsqueeze(pos: Int, numInputDims: Int = Int.MinValue): Unsqueeze[T]

    Permalink
  295. def createUpSampling1D(length: Int): UpSampling1D[T]

    Permalink
  296. def createUpSampling2D(size: List[Int], dataFormat: String): UpSampling2D[T]

    Permalink
  297. def createUpSampling3D(size: List[Int]): UpSampling3D[T]

    Permalink
  298. def createValidationSummary(logDir: String, appName: String): ValidationSummary

    Permalink
  299. def createView(sizes: List[Int], num_input_dims: Int = 0): View[T]

    Permalink
  300. def createVolumetricAveragePooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0, countIncludePad: Boolean = true, ceilMode: Boolean = false): VolumetricAveragePooling[T]

    Permalink
  301. def createVolumetricConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, withBias: Boolean = true, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricConvolution[T]

    Permalink
  302. def createVolumetricFullConvolution(nInputPlane: Int, nOutputPlane: Int, kT: Int, kW: Int, kH: Int, dT: Int = 1, dW: Int = 1, dH: Int = 1, padT: Int = 0, padW: Int = 0, padH: Int = 0, adjT: Int = 0, adjW: Int = 0, adjH: Int = 0, nGroup: Int = 1, noBias: Boolean = false, wRegularizer: Regularizer[T] = null, bRegularizer: Regularizer[T] = null): VolumetricFullConvolution[T]

    Permalink
  303. def createVolumetricMaxPooling(kT: Int, kW: Int, kH: Int, dT: Int, dW: Int, dH: Int, padT: Int = 0, padW: Int = 0, padH: Int = 0): VolumetricMaxPooling[T]

    Permalink
  304. def createWarmup(delta: Double): Warmup

    Permalink
  305. def createXavier(): Xavier.type

    Permalink
  306. def createZeros(): Zeros.type

    Permalink
  307. def criterionBackward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): List[JTensor]

    Permalink
  308. def criterionForward(criterion: AbstractCriterion[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, target: List[JTensor], targetIsTable: Boolean): T

    Permalink
  309. def disableClip(optimizer: Optimizer[T, MiniBatch[T]]): Unit

    Permalink
  310. def distributedImageFrameRandomSplit(imageFrame: DistributedImageFrame, weights: List[Double]): Array[ImageFrame]

    Permalink
  311. def distributedImageFrameToImageTensorRdd(imageFrame: DistributedImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JavaRDD[JTensor]

    Permalink
  312. def distributedImageFrameToLabelTensorRdd(imageFrame: DistributedImageFrame): JavaRDD[JTensor]

    Permalink
  313. def distributedImageFrameToPredict(imageFrame: DistributedImageFrame, key: String): JavaRDD[List[Any]]

    Permalink
  314. def distributedImageFrameToSample(imageFrame: DistributedImageFrame, key: String): JavaRDD[Sample]

    Permalink
  315. def distributedImageFrameToUri(imageFrame: DistributedImageFrame, key: String): JavaRDD[String]

    Permalink
  316. def dlClassifierModelTransform(dlClassifierModel: DLClassifierModel[T], dataSet: DataFrame): DataFrame

    Permalink
  317. def dlImageTransform(dlImageTransformer: DLImageTransformer, dataSet: DataFrame): DataFrame

    Permalink
  318. def dlModelTransform(dlModel: DLModel[T], dataSet: DataFrame): DataFrame

    Permalink
  319. def dlReadImage(path: String, sc: JavaSparkContext, minParitions: Int): DataFrame

    Permalink
  320. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  321. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  322. def evaluate(module: AbstractModule[Activity, Activity, T]): AbstractModule[Activity, Activity, T]

    Permalink
  323. def featureTransformDataset(dataset: DataSet[ImageFeature], transformer: FeatureTransformer): DataSet[ImageFeature]

    Permalink
  324. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  325. def findGraphNode(model: Graph[T], name: String): ModuleNode[T]

    Permalink
  326. def fitClassifier(classifier: DLClassifier[T], dataSet: DataFrame): DLModel[T]

    Permalink
  327. def fitEstimator(estimator: DLEstimator[T], dataSet: DataFrame): DLModel[T]

    Permalink
  328. def freeze(model: AbstractModule[Activity, Activity, T], freezeLayers: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  329. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  330. def getContainerModules(module: Container[Activity, Activity, T]): List[AbstractModule[Activity, Activity, T]]

    Permalink
  331. def getFlattenModules(module: Container[Activity, Activity, T], includeContainer: Boolean): List[AbstractModule[Activity, Activity, T]]

    Permalink
  332. def getHiddenState(rec: Recurrent[T]): JActivity

    Permalink
  333. def getNodeAndCoreNumber(): Array[Int]

    Permalink
  334. def getRealClassNameOfJValue(module: AbstractModule[Activity, Activity, T]): String

    Permalink
  335. def getRunningMean(module: BatchNormalization[T]): JTensor

    Permalink
  336. def getRunningStd(module: BatchNormalization[T]): JTensor

    Permalink
  337. def getWeights(model: AbstractModule[Activity, Activity, T]): List[JTensor]

    Permalink
  338. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  339. def imageFeatureGetKeys(imageFeature: ImageFeature): List[String]

    Permalink
  340. def imageFeatureToImageTensor(imageFeature: ImageFeature, floatKey: String = ImageFeature.floats, toChw: Boolean = true): JTensor

    Permalink
  341. def imageFeatureToLabelTensor(imageFeature: ImageFeature): JTensor

    Permalink
  342. def initEngine(): Unit

    Permalink
  343. def isDistributed(imageFrame: ImageFrame): Boolean

    Permalink
  344. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  345. def isLocal(imageFrame: ImageFrame): Boolean

    Permalink
  346. def isWithWeights(module: Module[T]): Boolean

    Permalink
  347. def jTensorsToActivity(input: List[JTensor], isTable: Boolean): Activity

    Permalink
  348. def loadBigDL(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  349. def loadBigDLModule(modulePath: String, weightPath: String): AbstractModule[Activity, Activity, T]

    Permalink
  350. def loadCaffe(model: AbstractModule[Activity, Activity, T], defPath: String, modelPath: String, matchAll: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
  351. def loadCaffeModel(defPath: String, modelPath: String): AbstractModule[Activity, Activity, T]

    Permalink
  352. def loadOptimMethod(path: String): OptimMethod[T]

    Permalink
  353. def loadTF(path: String, inputs: List[String], outputs: List[String], byteOrder: String, binFile: String = null, generatedBackward: Boolean = true): AbstractModule[Activity, Activity, T]

    Permalink
  354. def loadTorch(path: String): AbstractModule[Activity, Activity, T]

    Permalink
  355. def localImageFrameToImageTensor(imageFrame: LocalImageFrame, floatKey: String = ImageFeature.floats, toChw: Boolean = true): List[JTensor]

    Permalink
  356. def localImageFrameToLabelTensor(imageFrame: LocalImageFrame): List[JTensor]

    Permalink
  357. def localImageFrameToPredict(imageFrame: LocalImageFrame, key: String): List[List[Any]]

    Permalink
  358. def localImageFrameToSample(imageFrame: LocalImageFrame, key: String): List[Sample]

    Permalink
  359. def localImageFrameToUri(imageFrame: LocalImageFrame, key: String): List[String]

    Permalink
  360. def modelBackward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean, gradOutput: List[JTensor], gradOutputIsTable: Boolean): List[JTensor]

    Permalink
  361. def modelEvaluate(model: AbstractModule[Activity, Activity, T], valRDD: JavaRDD[Sample], batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
  362. def modelEvaluateImageFrame(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, batchSize: Int, valMethods: List[ValidationMethod[T]]): List[EvaluatedResult]

    Permalink
  363. def modelForward(model: AbstractModule[Activity, Activity, T], input: List[JTensor], inputIsTable: Boolean): List[JTensor]

    Permalink
  364. def modelGetParameters(model: AbstractModule[Activity, Activity, T]): Map[Any, Map[Any, List[List[Any]]]]

    Permalink
  365. def modelPredictClass(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample]): JavaRDD[Int]

    Permalink
  366. def modelPredictImage(model: AbstractModule[Activity, Activity, T], imageFrame: ImageFrame, featLayerName: String, shareBuffer: Boolean, batchPerPartition: Int, predictKey: String): ImageFrame

    Permalink
  367. def modelPredictRDD(model: AbstractModule[Activity, Activity, T], dataRdd: JavaRDD[Sample], batchSize: Int = 1): JavaRDD[JTensor]

    Permalink
  368. def modelSave(module: AbstractModule[Activity, Activity, T], path: String, overWrite: Boolean): Unit

    Permalink
  369. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  370. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  371. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  372. def predictLocal(model: AbstractModule[Activity, Activity, T], features: List[JTensor], batchSize: Int = 1): List[JTensor]

    Permalink
  373. def predictLocalClass(model: AbstractModule[Activity, Activity, T], features: List[JTensor]): List[Int]

    Permalink
  374. def quantize(module: AbstractModule[Activity, Activity, T]): Module[T]

    Permalink
  375. def read(path: String, sc: JavaSparkContext, minPartitions: Int): ImageFrame

    Permalink
  376. def readParquet(path: String, sc: JavaSparkContext): DistributedImageFrame

    Permalink
  377. def redirectSparkLogs(logPath: String): Unit

    Permalink
  378. def saveBigDLModule(module: AbstractModule[Activity, Activity, T], modulePath: String, weightPath: String, overWrite: Boolean): Unit

    Permalink
  379. def saveCaffe(module: AbstractModule[Activity, Activity, T], prototxtPath: String, modelPath: String, useV2: Boolean = true, overwrite: Boolean = false): Unit

    Permalink
  380. def saveGraphTopology(model: Graph[T], logPath: String): Graph[T]

    Permalink
  381. def saveOptimMethod(method: OptimMethod[T], path: String, overWrite: Boolean = false): Unit

    Permalink
  382. def saveTF(model: AbstractModule[Activity, Activity, T], inputs: List[Any], path: String, byteOrder: String, dataFormat: String): Unit

    Permalink
  383. def saveTensorDictionary(tensors: HashMap[String, JTensor], path: String): Unit

    Permalink

    Save tensor dictionary to a Java hashmap object file

  384. def seqFilesToImageFrame(url: String, sc: JavaSparkContext, classNum: Int, partitionNum: Int): ImageFrame

    Permalink
  385. def setBatchSizeDLClassifier(classifier: DLClassifier[T], batchSize: Int): DLClassifier[T]

    Permalink
  386. def setBatchSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], batchSize: Int): DLClassifierModel[T]

    Permalink
  387. def setBatchSizeDLEstimator(estimator: DLEstimator[T], batchSize: Int): DLEstimator[T]

    Permalink
  388. def setBatchSizeDLModel(dlModel: DLModel[T], batchSize: Int): DLModel[T]

    Permalink
  389. def setCheckPoint(optimizer: Optimizer[T, MiniBatch[T]], trigger: Trigger, checkPointPath: String, isOverwrite: Boolean): Unit

    Permalink
  390. def setConstantClip(optimizer: Optimizer[T, MiniBatch[T]], min: Float, max: Float): Unit

    Permalink
  391. def setCriterion(optimizer: Optimizer[T, MiniBatch[T]], criterion: Criterion[T]): Unit

    Permalink
  392. def setFeatureSizeDLClassifierModel(dlClassifierModel: DLClassifierModel[T], featureSize: ArrayList[Int]): DLClassifierModel[T]

    Permalink
  393. def setFeatureSizeDLModel(dlModel: DLModel[T], featureSize: ArrayList[Int]): DLModel[T]

    Permalink
  394. def setInitMethod(layer: Initializable, initMethods: ArrayList[InitializationMethod]): layer.type

    Permalink
  395. def setInitMethod(layer: Initializable, weightInitMethod: InitializationMethod, biasInitMethod: InitializationMethod): layer.type

    Permalink
  396. def setL2NormClip(optimizer: Optimizer[T, MiniBatch[T]], normValue: Float): Unit

    Permalink
  397. def setLabel(labelMap: Map[String, Float], imageFrame: ImageFrame): Unit

    Permalink
  398. def setLearningRateDLClassifier(classifier: DLClassifier[T], lr: Double): DLClassifier[T]

    Permalink
  399. def setLearningRateDLEstimator(estimator: DLEstimator[T], lr: Double): DLEstimator[T]

    Permalink
  400. def setMaxEpochDLClassifier(classifier: DLClassifier[T], maxEpoch: Int): DLClassifier[T]

    Permalink
  401. def setMaxEpochDLEstimator(estimator: DLEstimator[T], maxEpoch: Int): DLEstimator[T]

    Permalink
  402. def setModelSeed(seed: Long): Unit

    Permalink
  403. def setRunningMean(module: BatchNormalization[T], runningMean: JTensor): Unit

    Permalink
  404. def setRunningStd(module: BatchNormalization[T], runningStd: JTensor): Unit

    Permalink
  405. def setStopGradient(model: Graph[T], layers: List[String]): Graph[T]

    Permalink
  406. def setTrainData(optimizer: Optimizer[T, MiniBatch[T]], trainingRdd: JavaRDD[Sample], batchSize: Int): Unit

    Permalink
  407. def setTrainSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: TrainSummary): Unit

    Permalink
  408. def setValSummary(optimizer: Optimizer[T, MiniBatch[T]], summary: ValidationSummary): Unit

    Permalink
  409. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, xVal: List[JTensor], yVal: JTensor, vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  410. def setValidation(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valRdd: JavaRDD[Sample], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  411. def setValidationFromDataSet(optimizer: Optimizer[T, MiniBatch[T]], batchSize: Int, trigger: Trigger, valDataSet: DataSet[ImageFeature], vMethods: List[ValidationMethod[T]]): Unit

    Permalink
  412. def setWeights(model: AbstractModule[Activity, Activity, T], weights: List[JTensor]): Unit

    Permalink
  413. def showBigDlInfoLogs(): Unit

    Permalink
  414. def summaryReadScalar(summary: Summary, tag: String): List[List[Any]]

    Permalink
  415. def summarySetTrigger(summary: TrainSummary, summaryName: String, trigger: Trigger): TrainSummary

    Permalink
  416. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  417. def testSample(sample: Sample): Sample

    Permalink
  418. def testTensor(jTensor: JTensor): JTensor

    Permalink
  419. def toJSample(psamples: RDD[Sample]): RDD[dataset.Sample[T]]

    Permalink
  420. def toJSample(record: Sample): dataset.Sample[T]

    Permalink
  421. def toJTensor(tensor: Tensor[T]): JTensor

    Permalink
  422. def toPySample(sample: dataset.Sample[T]): Sample

    Permalink
  423. def toSampleArray(Xs: List[Tensor[T]], y: Tensor[T] = null): Array[dataset.Sample[T]]

    Permalink
  424. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  425. def toTensor(jTensor: JTensor): Tensor[T]

    Permalink
  426. def trainTF(modelPath: String, output: String, samples: JavaRDD[Sample], optMethod: OptimMethod[T], criterion: Criterion[T], batchSize: Int, endWhen: Trigger): AbstractModule[Activity, Activity, T]

    Permalink
  427. def transformImageFeature(transformer: FeatureTransformer, feature: ImageFeature): ImageFeature

    Permalink
  428. def transformImageFrame(transformer: FeatureTransformer, imageFrame: ImageFrame): ImageFrame

    Permalink
  429. def unFreeze(model: AbstractModule[Activity, Activity, T], names: List[String]): AbstractModule[Activity, Activity, T]

    Permalink
  430. def uniform(a: Double, b: Double, size: List[Int]): JTensor

    Permalink
  431. def updateParameters(model: AbstractModule[Activity, Activity, T], lr: Double): Unit

    Permalink
  432. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  433. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  434. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  435. def writeParquet(path: String, output: String, sc: JavaSparkContext, partitionNum: Int = 1): Unit

    Permalink

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped