Trait

com.johnsnowlabs.nlp.annotators.pos.perceptron

PerceptronTrainingUtils

Related Doc: package perceptron

Permalink

trait PerceptronTrainingUtils extends PerceptronUtils

Linear Supertypes
PerceptronUtils, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PerceptronTrainingUtils
  2. PerceptronUtils
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def buildTagBook(taggedSentences: Array[TaggedSentence], frequencyThreshold: Int, ambiguityThreshold: Double): Map[String, String]

    Permalink

    Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration

    Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration

    taggedSentences

    Takes entire tagged sentences to find frequent tags

    frequencyThreshold

    How many times at least a tag on a word to be marked as frequent

    ambiguityThreshold

    How much percentage of total amount of words are covered to be marked as frequent

  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def generatesTagBook(dataset: Dataset[_]): Array[TaggedSentence]

    Permalink

    Generates TagBook, which holds all the word to tags mapping that are not ambiguous

  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  19. def trainPerceptron(nIterations: Int, initialModel: TrainingPerceptronLegacy, taggedSentences: Array[TaggedSentence], taggedWordBook: Map[String, String]): AveragedPerceptron

    Permalink

    Iterates for training

  20. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from PerceptronUtils

Inherited from AnyRef

Inherited from Any

Ungrouped