Class

com.johnsnowlabs.ml.tensorflow

TensorflowT5

Related Doc: package tensorflow

Permalink

class TensorflowT5 extends Serializable

This class is used to run T5 model for For Sequence Batches of WordpieceTokenizedSentence. Input for this model must be tokenized with a SentencePieceModel,

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. TensorflowT5
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new TensorflowT5(tensorflow: TensorflowWrapper, spp: SentencePieceWrapper, configProtoBytes: Option[Array[Byte]] = None)

    Permalink

    tensorflow

    Albert Model wrapper with TensorFlowWrapper

    spp

    Albert SentencePiece model with SentencePieceWrapper

    configProtoBytes

    Configuration for TensorFlow session

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def decode(sentences: Array[Array[Long]]): Seq[String]

    Permalink
  7. def encode(sentences: Seq[Annotation], task: String): Seq[Array[Long]]

    Permalink
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def generateSeq2Seq(sentences: Seq[Annotation], batchSize: Int = 1, maxOutputLength: Int, task: String): Seq[Annotation]

    Permalink
  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. def process(batch: Seq[Array[Long]], maxOutputLength: Int = 200): Array[Array[Long]]

    Permalink
  19. val spp: SentencePieceWrapper

    Permalink

    Albert SentencePiece model with SentencePieceWrapper

  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  21. val tensorflow: TensorflowWrapper

    Permalink

    Albert Model wrapper with TensorFlowWrapper

  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped