Class/Object

com.johnsnowlabs.nlp.embeddings

BertSentenceEmbeddings

Related Docs: object BertSentenceEmbeddings | package embeddings

Permalink

class BertSentenceEmbeddings extends AnnotatorModel[BertSentenceEmbeddings] with HasBatchedAnnotate[BertSentenceEmbeddings] with WriteTensorflowModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties

BERT (Bidirectional Encoder Representations from Transformers) provides dense vector representations for natural language by using a deep, pre-trained neural network with the Transformer architecture

See https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/BertSentenceEmbeddingsTestSpec.scala for further reference on how to use this API. Sources:

Sources :

https://arxiv.org/abs/1810.04805

https://github.com/google-research/bert

Paper abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. BertSentenceEmbeddings
  2. HasCaseSensitiveProperties
  3. HasStorageRef
  4. HasEmbeddingsProperties
  5. WriteTensorflowModel
  6. HasBatchedAnnotate
  7. AnnotatorModel
  8. CanBeLazy
  9. RawAnnotator
  10. HasOutputAnnotationCol
  11. HasInputAnnotationCols
  12. HasOutputAnnotatorType
  13. ParamsAndFeaturesWritable
  14. HasFeatures
  15. DefaultParamsWritable
  16. MLWritable
  17. Model
  18. Transformer
  19. PipelineStage
  20. Logging
  21. Params
  22. Serializable
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BertSentenceEmbeddings()

    Permalink
  2. new BertSentenceEmbeddings(uid: String)

    Permalink

Type Members

  1. type AnnotationContent = Seq[Row]

    Permalink

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String

    Permalink
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame

    Permalink
    Attributes
    protected
    Definition Classes
    BertSentenceEmbeddingsAnnotatorModel
  11. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    Permalink

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    BertSentenceEmbeddingsHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]

    Permalink
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Permalink

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]

    Permalink
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. val caseSensitive: BooleanParam

    Permalink
    Definition Classes
    HasCaseSensitiveProperties
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. final def clear(param: Param[_]): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    Params
  19. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. val configProtoBytes: IntArrayParam

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  21. def copy(extra: ParamMap): BertSentenceEmbeddings

    Permalink

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  23. def createDatabaseConnection(database: Name): RocksDBConnection

    Permalink
    Definition Classes
    HasStorageRef
  24. final def defaultCopy[T <: Params](extra: ParamMap): T

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  25. val dimension: IntParam

    Permalink
    Definition Classes
    HasEmbeddingsProperties
  26. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  28. def explainParam(param: Param[_]): String

    Permalink
    Definition Classes
    Params
  29. def explainParams(): String

    Permalink
    Definition Classes
    Params
  30. def extraValidate(structType: StructType): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. def extraValidateMsg: String

    Permalink

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. final def extractParamMap(): ParamMap

    Permalink
    Definition Classes
    Params
  33. final def extractParamMap(extra: ParamMap): ParamMap

    Permalink
    Definition Classes
    Params
  34. val features: ArrayBuffer[Feature[_, _, _]]

    Permalink
    Definition Classes
    HasFeatures
  35. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def get[T](feature: StructFeature[T]): Option[T]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: SetFeature[T]): Option[Set[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: ArrayFeature[T]): Option[Array[T]]

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. final def get[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  41. def getBatchSize: Int

    Permalink

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  42. def getCaseSensitive: Boolean

    Permalink
    Definition Classes
    HasCaseSensitiveProperties
  43. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  44. def getConfigProtoBytes: Option[Array[Byte]]

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  45. final def getDefault[T](param: Param[T]): Option[T]

    Permalink
    Definition Classes
    Params
  46. def getDimension: Int

    Permalink
    Definition Classes
    HasEmbeddingsProperties
  47. def getInputCols: Array[String]

    Permalink

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  48. def getIsLong: Boolean

    Permalink

    get isLong

  49. def getLazyAnnotator: Boolean

    Permalink
    Definition Classes
    CanBeLazy
  50. def getMaxSentenceLength: Int

    Permalink

    Max sentence length to process

  51. def getModelIfNotSet: TensorflowBert

    Permalink

  52. final def getOrDefault[T](param: Param[T]): T

    Permalink
    Definition Classes
    Params
  53. final def getOutputCol: String

    Permalink

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  54. def getParam(paramName: String): Param[Any]

    Permalink
    Definition Classes
    Params
  55. def getStorageRef: String

    Permalink
    Definition Classes
    HasStorageRef
  56. final def hasDefault[T](param: Param[T]): Boolean

    Permalink
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean

    Permalink
    Definition Classes
    Params
  58. def hasParent: Boolean

    Permalink
    Definition Classes
    Model
  59. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  60. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  61. def initializeLogIfNecessary(isInterpreter: Boolean): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  62. val inputAnnotatorTypes: Array[String]

    Permalink

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

    Definition Classes
    BertSentenceEmbeddingsHasInputAnnotationCols
  63. final val inputCols: StringArrayParam

    Permalink

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  64. final def isDefined(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  65. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  66. val isLong: BooleanParam

    Permalink

    Use Long type instead of Int type for inputs

  67. final def isSet(param: Param[_]): Boolean

    Permalink
    Definition Classes
    Params
  68. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  69. val lazyAnnotator: BooleanParam

    Permalink
    Definition Classes
    CanBeLazy
  70. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  72. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  74. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  76. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  77. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  79. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  81. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  82. val maxSentenceLength: IntParam

    Permalink

    Max sentence length to process

  83. def msgHelper(schema: StructType): String

    Permalink
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  84. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  85. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  86. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  87. def onWrite(path: String, spark: SparkSession): Unit

    Permalink
  88. val outputAnnotatorType: AnnotatorType

    Permalink
  89. final val outputCol: Param[String]

    Permalink
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  90. lazy val params: Array[Param[_]]

    Permalink
    Definition Classes
    Params
  91. var parent: Estimator[BertSentenceEmbeddings]

    Permalink
    Definition Classes
    Model
  92. def save(path: String): Unit

    Permalink
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  93. def sentenceEndTokenId: Int

    Permalink

  94. def sentenceStartTokenId: Int

    Permalink

  95. def set[T](feature: StructFeature[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  96. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  97. def set[T](feature: SetFeature[T], value: Set[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  98. def set[T](feature: ArrayFeature[T], value: Array[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  99. final def set(paramPair: ParamPair[_]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  100. final def set(param: String, value: Any): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  101. final def set[T](param: Param[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    Params
  102. def setBatchSize(size: Int): BertSentenceEmbeddings.this.type

    Permalink

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  103. def setCaseSensitive(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink

    Whether to lowercase tokens or not

    Whether to lowercase tokens or not

    Definition Classes
    BertSentenceEmbeddingsHasCaseSensitiveProperties
  104. def setConfigProtoBytes(bytes: Array[Int]): BertSentenceEmbeddings.this.type

    Permalink

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  105. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  106. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  107. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    HasFeatures
  109. final def setDefault(paramPairs: ParamPair[_]*): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  110. final def setDefault[T](param: Param[T], value: T): BertSentenceEmbeddings.this.type

    Permalink
    Attributes
    protected
    Definition Classes
    Params
  111. def setDimension(value: Int): BertSentenceEmbeddings.this.type

    Permalink

    Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file

    Set Embeddings dimensions for the BERT model Only possible to set this when the first time is saved dimension is not changeable, it comes from BERT config file

    Definition Classes
    BertSentenceEmbeddingsHasEmbeddingsProperties
  112. final def setInputCols(value: String*): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    HasInputAnnotationCols
  113. final def setInputCols(value: Array[String]): BertSentenceEmbeddings.this.type

    Permalink

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  114. def setIsLong(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink

    set isLong

  115. def setLazyAnnotator(value: Boolean): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    CanBeLazy
  116. def setMaxSentenceLength(value: Int): BertSentenceEmbeddings.this.type

    Permalink

    Max sentence length to process

  117. def setModelIfNotSet(spark: SparkSession, tensorflow: TensorflowWrapper): BertSentenceEmbeddings.this.type

    Permalink

  118. final def setOutputCol(value: String): BertSentenceEmbeddings.this.type

    Permalink

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  119. def setParent(parent: Estimator[BertSentenceEmbeddings]): BertSentenceEmbeddings

    Permalink
    Definition Classes
    Model
  120. def setStorageRef(value: String): BertSentenceEmbeddings.this.type

    Permalink
    Definition Classes
    HasStorageRef
  121. def setVocabulary(value: Map[String, Int]): BertSentenceEmbeddings.this.type

    Permalink

    Vocabulary used to encode the words to ids with WordPieceEncoder

  122. val storageRef: Param[String]

    Permalink
    Definition Classes
    HasStorageRef
  123. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  124. def toString(): String

    Permalink
    Definition Classes
    Identifiable → AnyRef → Any
  125. def tokenize(sentences: Seq[Sentence]): Seq[WordpieceTokenizedSentence]

    Permalink
  126. final def transform(dataset: Dataset[_]): DataFrame

    Permalink

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  127. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  128. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Permalink
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  129. final def transformSchema(schema: StructType): StructType

    Permalink

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  130. def transformSchema(schema: StructType, logging: Boolean): StructType

    Permalink
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  131. val uid: String

    Permalink
    Definition Classes
    BertSentenceEmbeddings → Identifiable
  132. def validate(schema: StructType): Boolean

    Permalink

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  133. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit

    Permalink
    Definition Classes
    HasStorageRef
  134. val vocabulary: MapFeature[String, Int]

    Permalink

    vocabulary

  135. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  136. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  137. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  138. def wrapColumnMetadata(col: Column): Column

    Permalink
    Attributes
    protected
    Definition Classes
    RawAnnotator
  139. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column

    Permalink
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  140. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column

    Permalink
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  141. def write: MLWriter

    Permalink
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  142. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel
  143. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel
  144. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit

    Permalink
    Definition Classes
    WriteTensorflowModel

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[BertSentenceEmbeddings]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

Members

Parameter setters

Parameter getters