com.thoughtworks.deeplearning

DifferentiableINDArray

object DifferentiableINDArray

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DifferentiableINDArray
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. final class INDArrayLayerOps[Input <: Batch] extends AnyRef

  2. implicit final class INDArrayOps extends AnyRef

  3. trait OptimizerFactory extends AnyRef

  4. final class ToINDArrayLayerOps[Input <: Batch] extends AnyRef

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. implicit def Double*INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.*.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.*

    Returns a Poly.MathMethods.*.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.*

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.*(inputINDArrayLayer,anotherDoubleLayer)
      }
  7. implicit def Double+INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.+.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.+

    Returns a Poly.MathMethods.+.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.+

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.+(inputINDArrayLayer,anotherDoubleLayer)
      }
  8. implicit def Double-INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.-.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.-

    Returns a Poly.MathMethods.-.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods.-

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.-(inputINDArrayLayer,anotherDoubleLayer)
      }
  9. implicit def Double/INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods./.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods./

    Returns a Poly.MathMethods./.Case that accepts a Double Layer and a INDArray Layer for the polymorphic function Poly.MathMethods./

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods./(inputINDArrayLayer,anotherDoubleLayer)
      }
  10. implicit def INDArray*Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.*.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.*

    Returns a Poly.MathMethods.*.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.*

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.*(inputINDArrayLayer,anotherDoubleLayer)
      }
  11. implicit def INDArray*INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.*.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.*

    Returns a Poly.MathMethods.*.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.*

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherINDArrayLayer: INDArray @Symbolic) = {
        Poly.MathMethods.*(inputINDArrayLayer,anotherINDArrayLayer)
      }
  12. implicit def INDArray+Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.+.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.+

    Returns a Poly.MathMethods.+.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.+

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.+(inputINDArrayLayer,anotherDoubleLayer)
      }
  13. implicit def INDArray+INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.+.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.+

    Returns a Poly.MathMethods.+.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.+

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherINDArrayLayer: INDarray @Symbolic) = {
        Poly.MathMethods.+(inputINDArrayLayer,anotherINDArrayLayer)
      }
  14. implicit def INDArray-Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.-.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.-

    Returns a Poly.MathMethods.-.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods.-

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods.-(inputINDArrayLayer,anotherDoubleLayer)
      }
  15. implicit def INDArray-INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.-.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.-

    Returns a Poly.MathMethods.-.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods.-

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherINDArrayLayer: INDarray @Symbolic) = {
        Poly.MathMethods.-(inputINDArrayLayer,anotherINDArrayLayer)
      }
  16. implicit def INDArray/Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods./.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods./

    Returns a Poly.MathMethods./.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathMethods./

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathMethods./(inputINDArrayLayer,anotherDoubleLayer)
      }
  17. implicit def INDArray/INDArray[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods./.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods./

    Returns a Poly.MathMethods./.Case that accepts two INDArray Layers for the polymorphic function Poly.MathMethods./

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherINDArrayLayer: INDArray @Symbolic) = {
        Poly.MathMethods./(inputINDArrayLayer,anotherINDArrayLayer)
      }
  18. object Layers

  19. object OptimizerFactory

  20. object Optimizers

    Optimizers of NDArray

  21. implicit def abs(INDArray)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.abs.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.abs

    Returns a Poly.MathFunctions.abs.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.abs

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray.`abs(INDArray)`
      import com.thoughtworks.deeplearning.Symbolic
      def absNetwork(implicit inputINDArrayLayer: INDArray @Symbolic) = {
        Poly.MathFunctions.abs(indArrayLayer)
      }
    Note

    Importing this method will enable Poly.MathFunctions.abs for INDArray layers or any value able to convert to a INDArray layer

    See also

    Poly.LayerPoly1

  22. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  23. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  25. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  26. implicit def exp(INDArray)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.exp.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.exp

    Returns a Poly.MathFunctions.exp.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.exp

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray.`exp(INDArray)`
      import com.thoughtworks.deeplearning.Symbolic
      def expNetwork(implicit inputINDArrayLayer: INDArray @Symbolic) = {
        Poly.MathFunctions.exp(indArrayLayer)
      }
    Note

    Importing this method will enable Poly.MathFunctions.exp for INDArray layers or any value able to convert to a INDArray layer

    See also

    Poly.LayerPoly1

  27. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  28. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  29. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  30. implicit def indArrayToLiteral: Aux[INDArray, INDArray, INDArray]

  31. implicit def indArrayTrainable: Trainable[INDArray, INDArray]

  32. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  33. implicit def log(INDArray)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.log.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.log

    Returns a Poly.MathFunctions.log.Case that accepts INDArray Layers for the polymorphic function Poly.MathFunctions.log

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray.`log(INDArray)`
      import com.thoughtworks.deeplearning.Symbolic
      def logNetwork(implicit inputINDArrayLayer: INDArray @Symbolic) = {
        Poly.MathFunctions.log(indArrayLayer)
      }
    Note

    Importing this method will enable Poly.MathFunctions.log for INDArray layers or any value able to convert to a INDArray layer

    See also

    Poly.LayerPoly1

  34. implicit def max(INDArray,Double)[Left, Right, Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.max.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathFunctions.max

    Returns a Poly.MathFunctions.max.Case that accepts a INDArray Layer and a Double Layer for the polymorphic function Poly.MathFunctions.max

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableINDArray._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputINDArrayLayer: INDArray @Symbolic)(anotherDoubleLayer: Double @Symbolic) = {
        Poly.MathFunctions.max(inputINDArrayLayer,anotherDoubleLayer)
      }
  35. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  36. final def notify(): Unit

    Definition Classes
    AnyRef
  37. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  38. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  39. implicit def toINDArrayLayerOps[From, Input <: Batch, OutputData, OutputDelta](from: From)(implicit toLayer: Aux[From, Input, OutputData, OutputDelta], constrait: <:<[Aux[Input, Aux[OutputData, OutputDelta]], Aux[Input, Aux[INDArray, INDArray]]]): INDArrayLayerOps[Input]

    A helper that contains common boilerplate code for all NDArray layers.

    A helper that contains common boilerplate code for all NDArray layers.

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableNDArray._
  40. def toString(): String

    Definition Classes
    AnyRef → Any
  41. implicit def toToINDArrayLayerOps[Element, Input <: Batch](layerVector: Seq[Seq[Element]])(implicit toLayer: OfPlaceholder[Element, Input, DoublePlaceholder]): ToINDArrayLayerOps[Input]

  42. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped