com.thoughtworks.deeplearning.DifferentiableINDArray
calculate the convolution
calculate the convolution
4 dimensions weight
1 dimension bias
the kernel/filter width and height
the stride width and height
the padding width and height
convolution result
Im2col ops
Im2col ops
kernel size / filter size
stride size
padding size
Return mean of all elements of NDArray
[use case]
[use case]
[use case]
[use case]
Return shape of NDArray
Return sum dimensions of NDArray,will return an INDArrayPlaceholder
Return sum of all elements of NDArray
calculate the convolution
calculate the convolution
4 dimensions weight
1 dimension bias
the kernel/filter width and height
the stride width and height
the padding width and height
convolution result
(iNDArrayLayerOps: INDArrayLayerOps[Input]).convn(weight, bias, kernel, stride, padding)
(iNDArrayLayerOps: INDArrayLayerOps[Input]).dot(right)
Im2col ops
Im2col ops
kernel size / filter size
stride size
padding size
(iNDArrayLayerOps: INDArrayLayerOps[Input]).im2col(kernel, stride, padding)
(iNDArrayLayerOps: INDArrayLayerOps[Input]).maxPool(dimensions)
Return mean of all elements of NDArray
Return mean of all elements of NDArray
(iNDArrayLayerOps: INDArrayLayerOps[Input]).mean
[use case]
(iNDArrayLayerOps: INDArrayLayerOps[Input]).permute(newShape)
[use case]
(iNDArrayLayerOps: INDArrayLayerOps[Input]).permute(newShape)
[use case]
(iNDArrayLayerOps: INDArrayLayerOps[Input]).reshape(newShape)
[use case]
(iNDArrayLayerOps: INDArrayLayerOps[Input]).reshape(newShape)
Return shape of NDArray
Return shape of NDArray
(iNDArrayLayerOps: INDArrayLayerOps[Input]).shape
Return sum dimensions of NDArray,will return an INDArrayPlaceholder
Return sum dimensions of NDArray,will return an INDArrayPlaceholder
(iNDArrayLayerOps: INDArrayLayerOps[Input]).sum(dimensions)
Return sum of all elements of NDArray
Return sum of all elements of NDArray
(iNDArrayLayerOps: INDArrayLayerOps[Input]).sum
(iNDArrayLayerOps: INDArrayLayerOps[Input]).toSeq
(iNDArrayLayerOps: INDArrayLayerOps[Input]).unary_-