Object/Class

akka.stream.scaladsl

Sink

Related Docs: class Sink | package scaladsl

Permalink

object Sink

Source
Sink.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Sink
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def actorRef[T](ref: ActorRef, onCompleteMessage: Any): Sink[T, NotUsed]

    Permalink

    Sends the elements of the stream to the given ActorRef.

    Sends the elements of the stream to the given ActorRef. If the target actor terminates the stream will be canceled. When the stream is completed successfully the given onCompleteMessage will be sent to the destination actor. When the stream is completed with failure a akka.actor.Status.Failure message will be sent to the destination actor.

    It will request at most maxInputBufferSize number of elements from upstream, but there is no back-pressure signal from the destination actor, i.e. if the actor is not consuming the messages fast enough the mailbox of the actor will grow. For potentially slow consumer actors it is recommended to use a bounded mailbox with zero mailbox-push-timeout-time or use a rate limiting operator in front of this Sink.

  5. def actorRefWithAck[T](ref: ActorRef, onInitMessage: Any, ackMessage: Any, onCompleteMessage: Any, onFailureMessage: (Throwable) ⇒ Any = Status.Failure): Sink[T, NotUsed]

    Permalink

    Sends the elements of the stream to the given ActorRef that sends back back-pressure signal.

    Sends the elements of the stream to the given ActorRef that sends back back-pressure signal. First element is always onInitMessage, then stream is waiting for acknowledgement message ackMessage from the given actor which means that it is ready to process elements. It also requires ackMessage message after each stream element to make backpressure work.

    If the target actor terminates the stream will be canceled. When the stream is completed successfully the given onCompleteMessage will be sent to the destination actor. When the stream is completed with failure - result of onFailureMessage(throwable) function will be sent to the destination actor.

  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def asPublisher[T](fanout: Boolean): Sink[T, Publisher[T]]

    Permalink

    A Sink that materializes into a org.reactivestreams.Publisher.

    A Sink that materializes into a org.reactivestreams.Publisher.

    If fanout is true, the materialized Publisher will support multiple Subscribers and the size of the inputBuffer configured for this operator becomes the maximum number of elements that the fastest org.reactivestreams.Subscriber can be ahead of the slowest one before slowing the processing down due to back pressure.

    If fanout is false then the materialized Publisher will only support a single Subscriber and reject any additional Subscribers.

  8. def cancelled[T]: Sink[T, NotUsed]

    Permalink

    A Sink that immediately cancels its upstream after materialization.

  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def collection[T, That](implicit cbf: Factory[T, That with Iterable[_]]): Sink[T, Future[That]]

    Permalink

    A Sink that keeps on collecting incoming elements until upstream terminates.

    A Sink that keeps on collecting incoming elements until upstream terminates. As upstream may be unbounded, Flow[T].take or the stricter Flow[T].limit (and their variants) may be used to ensure boundedness. Materializes into a Future of That[T] containing all the collected elements. That[T] is limited to the limitations of the CanBuildFrom associated with it. For example, Seq is limited to Int.MaxValue elements. See [The Architecture of Scala 2.13's Collections](https://docs.scala-lang.org/overviews/core/architecture-of-scala-213-collections.html) for more info. This Sink will cancel the stream after having received that many elements.

    See also Flow.limit, Flow.limitWeighted, Flow.take, Flow.takeWithin, Flow.takeWhile

  11. def combine[T, U](first: Sink[U, _], second: Sink[U, _], rest: Sink[U, _]*)(strategy: (Int) ⇒ Graph[UniformFanOutShape[T, U], NotUsed]): Sink[T, NotUsed]

    Permalink

    Combine several sinks with fan-out strategy like Broadcast or Balance and returns Sink.

  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def fold[U, T](zero: U)(f: (U, T) ⇒ U): Sink[T, Future[U]]

    Permalink

    A Sink that will invoke the given function for every received element, giving it its previous output (or the given zero value) and the element as input.

    A Sink that will invoke the given function for every received element, giving it its previous output (or the given zero value) and the element as input. The returned scala.concurrent.Future will be completed with value of the final function evaluation when the input stream ends, or completed with Failure if there is a failure signaled in the stream.

    See also

    #foldAsync

  16. def foldAsync[U, T](zero: U)(f: (U, T) ⇒ Future[U]): Sink[T, Future[U]]

    Permalink

    A Sink that will invoke the given asynchronous function for every received element, giving it its previous output (or the given zero value) and the element as input.

    A Sink that will invoke the given asynchronous function for every received element, giving it its previous output (or the given zero value) and the element as input. The returned scala.concurrent.Future will be completed with value of the final function evaluation when the input stream ends, or completed with Failure if there is a failure signaled in the stream.

    See also

    #fold

  17. def foreach[T](f: (T) ⇒ Unit): Sink[T, Future[Done]]

    Permalink

    A Sink that will invoke the given procedure for each received element.

    A Sink that will invoke the given procedure for each received element. The sink is materialized into a scala.concurrent.Future which will be completed with Success when reaching the normal end of the stream, or completed with Failure if there is a failure signaled in the stream.

  18. def foreachAsync[T](parallelism: Int)(f: (T) ⇒ Future[Unit]): Sink[T, Future[Done]]

    Permalink

    A Sink that will invoke the given procedure asynchronously for each received element.

    A Sink that will invoke the given procedure asynchronously for each received element. The sink is materialized into a scala.concurrent.Future which will be completed with Success when reaching the normal end of the stream, or completed with Failure if there is a failure signaled in the stream.

  19. def fromGraph[T, M](g: Graph[SinkShape[T], M]): Sink[T, M]

    Permalink

    A graph with the shape of a sink logically is a sink, this method makes it so also in type.

  20. def fromSubscriber[T](subscriber: Subscriber[T]): Sink[T, NotUsed]

    Permalink

    Helper to create Sink from Subscriber.

  21. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  22. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  23. def head[T]: Sink[T, Future[T]]

    Permalink

    A Sink that materializes into a Future of the first value received.

    A Sink that materializes into a Future of the first value received. If the stream completes before signaling at least a single element, the Future will be failed with a NoSuchElementException. If the stream signals an error errors before signaling at least a single element, the Future will be failed with the streams exception.

    See also headOption.

  24. def headOption[T]: Sink[T, Future[Option[T]]]

    Permalink

    A Sink that materializes into a Future of the optional first value received.

    A Sink that materializes into a Future of the optional first value received. If the stream completes before signaling at least a single element, the value of the Future will be None. If the stream signals an error errors before signaling at least a single element, the Future will be failed with the streams exception.

    See also head.

  25. def ignore: Sink[Any, Future[Done]]

    Permalink

    A Sink that will consume the stream and discard the elements.

  26. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  27. def last[T]: Sink[T, Future[T]]

    Permalink

    A Sink that materializes into a Future of the last value received.

    A Sink that materializes into a Future of the last value received. If the stream completes before signaling at least a single element, the Future will be failed with a NoSuchElementException. If the stream signals an error, the Future will be failed with the stream's exception.

    See also lastOption, takeLast.

  28. def lastOption[T]: Sink[T, Future[Option[T]]]

    Permalink

    A Sink that materializes into a Future of the optional last value received.

    A Sink that materializes into a Future of the optional last value received. If the stream completes before signaling at least a single element, the value of the Future will be None. If the stream signals an error, the Future will be failed with the stream's exception.

    See also last, takeLast.

  29. def lazyInitAsync[T, M](sinkFactory: () ⇒ Future[Sink[T, M]]): Sink[T, Future[Option[M]]]

    Permalink

    Creates a real Sink upon receiving the first element.

    Creates a real Sink upon receiving the first element. Internal Sink will not be created if there are no elements, because of completion or error.

    If upstream completes before an element was received then the Future is completed with None. If upstream fails before an element was received, sinkFactory throws an exception, or materialization of the internal sink fails then the Future is completed with the exception. Otherwise the Future is completed with the materialized value of the internal sink.

  30. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  31. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  32. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  33. def onComplete[T](callback: (Try[Done]) ⇒ Unit): Sink[T, NotUsed]

    Permalink

    A Sink that when the flow is completed, either through a failure or normal completion, apply the provided function with scala.util.Success or scala.util.Failure.

  34. def queue[T](): Sink[T, SinkQueueWithCancel[T]]

    Permalink

    Creates a Sink that is materialized as an akka.stream.scaladsl.SinkQueue.

    Creates a Sink that is materialized as an akka.stream.scaladsl.SinkQueue. akka.stream.scaladsl.SinkQueue.pull method is pulling element from the stream and returns Future[Option[T]]. Future completes when element is available.

    Before calling pull method second time you need to wait until previous Future completes. Pull returns Failed future with IllegalStateException if previous future has not yet completed.

    Sink will request at most number of elements equal to size of inputBuffer from upstream and then stop back pressure. You can configure size of input buffer by using Sink.withAttributes method.

    For stream completion you need to pull all elements from akka.stream.scaladsl.SinkQueue including last None as completion marker

    See also akka.stream.scaladsl.SinkQueueWithCancel

  35. def reduce[T](f: (T, T) ⇒ T): Sink[T, Future[T]]

    Permalink

    A Sink that will invoke the given function for every received element, giving it its previous output (from the second element) and the element as input.

    A Sink that will invoke the given function for every received element, giving it its previous output (from the second element) and the element as input. The returned scala.concurrent.Future will be completed with value of the final function evaluation when the input stream ends, or completed with Failure if there is a failure signaled in the stream.

    If the stream is empty (i.e. completes before signalling any elements), the reduce operator will fail its downstream with a NoSuchElementException, which is semantically in-line with that Scala's standard library collections do in such situations.

    Adheres to the ActorAttributes.SupervisionStrategy attribute.

  36. def seq[T]: Sink[T, Future[Seq[T]]]

    Permalink

    A Sink that keeps on collecting incoming elements until upstream terminates.

    A Sink that keeps on collecting incoming elements until upstream terminates. As upstream may be unbounded, Flow[T].take or the stricter Flow[T].limit (and their variants) may be used to ensure boundedness. Materializes into a Future of Seq[T] containing all the collected elements. Seq is limited to Int.MaxValue elements, this Sink will cancel the stream after having received that many elements.

    See also Flow.limit, Flow.limitWeighted, Flow.take, Flow.takeWithin, Flow.takeWhile

  37. def setup[T, M](factory: (ActorMaterializer, Attributes) ⇒ Sink[T, M]): Sink[T, Future[M]]

    Permalink

    Defers the creation of a Sink until materialization.

    Defers the creation of a Sink until materialization. The factory function exposes ActorMaterializer which is going to be used during materialization and Attributes of the Sink returned by this method.

  38. def shape[T](name: String): SinkShape[T]

    Permalink

    INTERNAL API

  39. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  40. def takeLast[T](n: Int): Sink[T, Future[Seq[T]]]

    Permalink

    A Sink that materializes into a a Future of immutable.Seq[T] containing the last n collected elements.

    A Sink that materializes into a a Future of immutable.Seq[T] containing the last n collected elements.

    If the stream completes before signaling at least n elements, the Future will complete with all elements seen so far. If the stream never completes, the Future will never complete. If there is a failure signaled in the stream the Future will be completed with failure.

  41. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  42. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  44. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Deprecated Value Members

  1. def actorSubscriber[T](props: Props): Sink[T, ActorRef]

    Permalink

    Creates a Sink that is materialized to an akka.actor.ActorRef which points to an Actor created according to the passed in akka.actor.Props.

    Creates a Sink that is materialized to an akka.actor.ActorRef which points to an Actor created according to the passed in akka.actor.Props. Actor created by the props must be akka.stream.actor.ActorSubscriber.

    Annotations
    @deprecated
    Deprecated

    (Since version 2.5.0) Use akka.stream.stage.GraphStage and fromGraph instead, it allows for all operations an Actor would and is more type-safe as well as guaranteed to be ReactiveStreams compliant.

  2. def foreachParallel[T](parallelism: Int)(f: (T) ⇒ Unit)(implicit ec: ExecutionContext): Sink[T, Future[Done]]

    Permalink

    A Sink that will invoke the given function to each of the elements as they pass in.

    A Sink that will invoke the given function to each of the elements as they pass in. The sink is materialized into a scala.concurrent.Future

    If f throws an exception and the supervision decision is akka.stream.Supervision.Stop the Future will be completed with failure.

    If f throws an exception and the supervision decision is akka.stream.Supervision.Resume or akka.stream.Supervision.Restart the element is dropped and the stream continues.

    See also Flow.mapAsyncUnordered

    Annotations
    @deprecated
    Deprecated

    (Since version 2.5.17) Use foreachAsync instead, it allows you to choose how to run the procedure, by calling some other API returning a Future or spawning a new Future.

  3. def lazyInit[T, M](sinkFactory: (T) ⇒ Future[Sink[T, M]], fallback: () ⇒ M): Sink[T, Future[M]]

    Permalink

    Creates a real Sink upon receiving the first element.

    Creates a real Sink upon receiving the first element. Internal Sink will not be created if there are no elements, because of completion or error.

    If upstream completes before an element was received then the Future is completed with the value created by fallback. If upstream fails before an element was received, sinkFactory throws an exception, or materialization of the internal sink fails then the Future is completed with the exception. Otherwise the Future is completed with the materialized value of the internal sink.

    Annotations
    @Deprecated @deprecated
    Deprecated

    (Since version 2.5.11) Use lazyInitAsync instead. (lazyInitAsync no more needs a fallback function and the materialized value more clearly indicates if the internal sink was materialized or not.)

Inherited from AnyRef

Inherited from Any

Ungrouped