Object/Trait

zio.prelude

Inverse

Related Docs: trait Inverse | package prelude

Permalink

object Inverse extends Lawful[EqualInverse]

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Inverse
  2. ZLawful
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def +[Caps1[x] <: EqualInverse[x], R1 <: Any](that: ZLawful[Caps1, R1]): ZLawful[Caps1, R1]

    Permalink
    Definition Classes
    ZLawful
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. implicit def DeriveInverse[F[_], A](implicit derive: Derive[F, Inverse], inverse: Inverse[A]): Inverse[F[A]]

    Permalink

    Derives an Inverse[F[A]] given a Derive[F, Inverse] and an Inverse[A].

  6. implicit def Tuple10Inverse[A, B, C, D, E, F, G, H, I, J](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J]): Inverse[(A, B, C, D, E, F, G, H, I, J)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  7. implicit def Tuple11Inverse[A, B, C, D, E, F, G, H, I, J, K](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K]): Inverse[(A, B, C, D, E, F, G, H, I, J, K)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  8. implicit def Tuple12Inverse[A, B, C, D, E, F, G, H, I, J, K, L](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  9. implicit def Tuple13Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  10. implicit def Tuple14Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  11. implicit def Tuple15Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  12. implicit def Tuple16Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  13. implicit def Tuple17Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  14. implicit def Tuple18Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  15. implicit def Tuple19Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  16. implicit def Tuple20Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  17. implicit def Tuple21Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T], arg20: Inverse[U]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  18. implicit def Tuple22Inverse[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I], arg9: Inverse[J], arg10: Inverse[K], arg11: Inverse[L], arg12: Inverse[M], arg13: Inverse[N], arg14: Inverse[O], arg15: Inverse[P], arg16: Inverse[Q], arg17: Inverse[R], arg18: Inverse[S], arg19: Inverse[T], arg20: Inverse[U], arg21: Inverse[V]): Inverse[(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  19. implicit def Tuple2Inverse[A, B](implicit arg0: Inverse[A], arg1: Inverse[B]): Inverse[(A, B)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  20. implicit def Tuple3Inverse[A, B, C](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C]): Inverse[(A, B, C)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  21. implicit def Tuple4Inverse[A, B, C, D](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D]): Inverse[(A, B, C, D)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  22. implicit def Tuple5Inverse[A, B, C, D, E](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E]): Inverse[(A, B, C, D, E)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  23. implicit def Tuple6Inverse[A, B, C, D, E, F](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F]): Inverse[(A, B, C, D, E, F)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  24. implicit def Tuple7Inverse[A, B, C, D, E, F, G](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G]): Inverse[(A, B, C, D, E, F, G)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  25. implicit def Tuple8Inverse[A, B, C, D, E, F, G, H](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H]): Inverse[(A, B, C, D, E, F, G, H)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  26. implicit def Tuple9Inverse[A, B, C, D, E, F, G, H, I](implicit arg0: Inverse[A], arg1: Inverse[B], arg2: Inverse[C], arg3: Inverse[D], arg4: Inverse[E], arg5: Inverse[F], arg6: Inverse[G], arg7: Inverse[H], arg8: Inverse[I]): Inverse[(A, B, C, D, E, F, G, H, I)]

    Permalink

    Derives an Inverse for a product type given an Inverse for each element of the product type.

  27. def apply[A](implicit Inverse: Inverse[A]): Inverse[A]

    Permalink

    Summons an implicit Inverse[A].

  28. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  29. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  31. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  32. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  33. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  34. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  35. lazy val inverseLaw: Laws[EqualInverse]

    Permalink

    The inverse law states that for some binary operator *, for all values a, the following must hold:

    The inverse law states that for some binary operator *, for all values a, the following must hold:

    a * a === identity
  36. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  37. lazy val laws: Laws[EqualInverse]

    Permalink

    The set of all laws that instances of Inverse must satisfy.

    The set of all laws that instances of Inverse must satisfy.

    Definition Classes
    Inverse → ZLawful
  38. def make[A](identity0: A, op: (A, A) ⇒ A, inv: (A, A) ⇒ A): Inverse[A]

    Permalink

    Constructs an Inverse instance from an associative binary operator, an identity element, and an inverse binary operator.

  39. def makeFrom[A](identity: Identity[A], inverse: (A, A) ⇒ A): Inverse[A]

    Permalink

    Constructs an Inverse instance from an identity instance and an inverse function.

  40. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  41. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  42. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  43. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  44. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  45. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from ZLawful[EqualInverse, Any]

Inherited from AnyRef

Inherited from Any

Ungrouped