Class/Object

zio.prelude

ZNonEmptySet

Related Docs: object ZNonEmptySet | package prelude

Permalink

final class ZNonEmptySet[+A, +B] extends AnyRef

Similar to ZSet, a ZNonEmptySet[A, B] is a guaranteed non-empty set of A values where B represents some notion of "how many" A values are included in the set. This can be the number of times each element appears in the set if B is a natural number, the probability associated with an element in the set if B is a rational number, or even whether an element appears at all if B is a boolean.

Self Type
ZNonEmptySet[A, B]
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ZNonEmptySet
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def <*>[B1 >: B, C](that: ZNonEmptySet[C, B1])(implicit ev1: Commutative[Sum[B1]], ev2: Commutative[Prod[B1]]): ZNonEmptySet[(A, C), B1]

    Permalink

    A symbolic alias for zip.

  4. def <>[A1 >: A, B1 >: B](that: ZSet[A1, B1])(implicit ev: Commutative[Sum[B1]]): ZNonEmptySet[A1, B1]

    Permalink

    A symbolic alias for combine.

  5. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  6. def apply[A1 >: A, B1 >: B](a: A1)(implicit ev: Identity[Sum[B1]]): B1

    Permalink

    Returns the number of times the specified element appears in the set.

  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def combine[A1 >: A, B1 >: B](that: ZSet[A1, B1])(implicit ev: Commutative[Sum[B1]]): ZNonEmptySet[A1, B1]

    Permalink

    Combines this set with the specified set to produce a new set where the number of times each element appears is the sum of the number of times it appears in this set and the specified set.

  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(that: Any): Boolean

    Permalink

    Returns whether this set is equal to the specified set, meaning that the same elements appear in both sets the same number of times.

    Returns whether this set is equal to the specified set, meaning that the same elements appear in both sets the same number of times.

    Definition Classes
    ZNonEmptySet → AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def flatMap[B1 >: B, C](f: (A) ⇒ ZNonEmptySet[C, B1])(implicit ev1: Commutative[Sum[B1]], ev2: Commutative[Prod[B1]]): ZNonEmptySet[C, B1]

    Permalink

    Creates a new set for each element in this set and combines the resulting sets together.

    Creates a new set for each element in this set and combines the resulting sets together. The number of times each element appears will be the sum of the products of the number of times it appeared in the original set and the number of times it appears in each new set.

  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink

    Returns the hash code of this set.

    Returns the hash code of this set.

    Definition Classes
    ZNonEmptySet → AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def map[B1 >: B, C](f: (A) ⇒ C)(implicit ev: Commutative[Sum[B1]]): ZNonEmptySet[C, B1]

    Permalink

    Transforms the elements in the set using the specified function.

    Transforms the elements in the set using the specified function. If this results in mapping two or more elements to the same values, the number of times the new value appears in the set will be the sum of the number of times each of the old values appeared in the set.

  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. def toMap[A1 >: A]: Map[A1, B]

    Permalink

    Converts this set to a Map from elements to how many times they appear in the set.

  23. def toNonEmptySet[A1 >: A, B1 >: B](implicit ev1: Equal[B1], ev2: Identity[Sum[B1]]): NonEmptySet[A1]

    Permalink

    Converts this set to a Set, discarding information about how many times an element appears in the set beyond whether it appears at all.

  24. def toString(): String

    Permalink

    Returns a meaningful string representation of this set.

    Returns a meaningful string representation of this set.

    Definition Classes
    ZNonEmptySet → AnyRef → Any
  25. def toZSet: ZSet[A, B]

    Permalink
  26. def transform[C](f: (B) ⇒ C): ZNonEmptySet[A, C]

    Permalink

    Transforms the representation of how many times each element appears in the set with the specified function.

  27. def union[A1 >: A, B1 >: B](that: ZSet[A1, B1])(implicit ev1: Commutative[Max[B1]], ev2: Identity[Sum[B1]]): ZNonEmptySet[A1, B1]

    Permalink

    Combines this set with the specified set to produce a new set where the number of times each element appears is the maximum of the number of times it appears in this set and the specified set.

  28. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. def zip[B1 >: B, C](that: ZNonEmptySet[C, B1])(implicit ev1: Commutative[Sum[B1]], ev2: Commutative[Prod[B1]]): ZNonEmptySet[(A, C), B1]

    Permalink

    Combines this set with the specified set to produce their cartesian product.

  32. def zipWith[B1 >: B, C, D](that: ZNonEmptySet[C, B1])(f: (A, C) ⇒ D)(implicit ev1: Commutative[Sum[B1]], ev2: Commutative[Prod[B1]]): ZNonEmptySet[D, B1]

    Permalink

    Combines this set with the specified set to produce their cartesian product, combining pair of elements using the specified function f.

  33. def |[A1 >: A, B1 >: B](that: ZSet[A1, B1])(implicit ev1: Commutative[Max[B1]], ev2: Identity[Sum[B1]]): ZNonEmptySet[A1, B1]

    Permalink

    A symbolic alias for union.

Inherited from AnyRef

Inherited from Any

Ungrouped