For column having the annotation @Compress(compressor), compress the column with the given compressor
For column having the annotation @Compress(compressor), compress the column with the given compressor
structType containing the meta-information of the source DataFrame
DataFrame to be compressed
a new DataFrame with compressed column(s)
Decompress a DataFrame having compressed column(s)
Decompress a DataFrame having compressed column(s)
structType containing the meta-information of the target DataFrame
DataFrame to be decompressed
a DataFrame with column(s) decompressed
Drop all compound key columns
Convert a DataFrame to Dataset according to the annotations
Convert a DataFrame to Dataset according to the annotations
type of dataset
input df
import io.github.setl.annotations.ColumnName case class MyObject(@ColumnName("col1") column1: String, column2: String) convert +----+-------+ |col1|column2| +----+-------+ | a| A| | b| B| +----+-------+ to +-------+-------+ |column1|column2| +-------+-------+ | a| A| | b| B| +-------+-------+
StrutType containing metadata of column name
the raw DataFrame loaded from a data persistence store
a new DataFrame with renamed columns
import io.github.setl.annotations.ColumnName case class MyObject(@ColumnName("col1") column1: String, column2: String) convert +-------+-------+ |column1|column2| +-------+-------+ | a| A| | b| B| +-------+-------+ to +----+-------+ |col1|column2| +----+-------+ | a| A| | b| B| +----+-------+
StrutType containing metadata of column name
the DataFrame to be saved into a data persistence store
Convert a dataset to a DataFrame according to annotations
Convert a dataset to a DataFrame according to annotations
type of dataset
input dataset
SchemaConverter will rename the column of a dataset/dataframe according to the given case class T.