Class

io.github.mandar2812.dynaml.evaluation

BinaryClassificationMetrics

Related Doc: package evaluation

Permalink

class BinaryClassificationMetrics extends Metrics[Double]

Class implementing the calculation of different binary classification performance metrics

Linear Supertypes
Metrics[Double], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. BinaryClassificationMetrics
  2. Metrics
  3. AnyRef
  4. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BinaryClassificationMetrics(scoresAndLabels: List[(Double, Double)], len: Int, logisticFlag: Boolean = false)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def ++(otherMetrics: BinaryClassificationMetrics): BinaryClassificationMetrics

    Permalink
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. def accuracyByThreshold(): List[(Double, Double)]

    Permalink
  6. def areaUnderPR(): Double

    Permalink

    Calculate the area under the Precision-Recall curve.

  7. def areaUnderROC(): Double

    Permalink

    Calculate the area under the Receiver Operating Characteristic curve.

  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  12. def fMeasureByThreshold(beta: Double): List[(Double, Double)]

    Permalink

    Calculate the F1 metric by threshold, for an arbitrary beta value

  13. def fMeasureByThreshold(): List[(Double, Double)]

    Permalink

    Calculate the F1 metric by threshold, for a beta value of 1.0

  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def generatePlots(): Unit

    Permalink

    Generate the PR, ROC and F1 measure plots using Scala-Chart.

    Generate the PR, ROC and F1 measure plots using Scala-Chart.

    Definition Classes
    BinaryClassificationMetricsMetrics
  16. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. def kpi(): DenseVector[Double]

    Permalink
    Definition Classes
    BinaryClassificationMetricsMetrics
  20. val len: Int

    Permalink
  21. val length: Int

    Permalink
  22. def matthewsCCByThreshold: List[(Double, Double)]

    Permalink

    Returns the Matthew's correlation coefficient for every thresholding value.

  23. var name: String

    Permalink
    Attributes
    protected
    Definition Classes
    Metrics
  24. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  25. val negatives: List[(Double, Double)]

    Permalink
  26. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  27. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. val positives: List[(Double, Double)]

    Permalink
  29. def pr(): List[(Double, Double)]

    Permalink

    Return the Precision-Recall curve, as a List of Tuple2 (Recall, Precision).

  30. def precisionByThreshold(): List[(Double, Double)]

    Permalink

    Return the Precision-Threshold curve, as a List of Tuple2 (Threshold, Precision).

  31. def print(): Unit

    Permalink
    Definition Classes
    BinaryClassificationMetricsMetrics
  32. def recallByThreshold(): List[(Double, Double)]

    Permalink

    Return the Recall-Threshold curve, as a List of Tuple2 (Threshold, Recall).

  33. def roc(): List[(Double, Double)]

    Permalink

    Return the Receiver Operating Characteristic curve, as a List of Tuple2 (False Positive Rate, True Positive Rate).

  34. val scoresAndLabels: List[(Double, Double)]

    Permalink
    Attributes
    protected
    Definition Classes
    BinaryClassificationMetricsMetrics
  35. def scores_and_labels: List[(Double, Double)]

    Permalink
  36. def setName(n: String): BinaryClassificationMetrics.this.type

    Permalink
    Definition Classes
    Metrics
  37. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  38. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  39. def tpfpByThreshold(): List[(Double, (Double, Double))]

    Permalink

    Return the True Positive and False Positive Rate with respect to the threshold, as a List of Tuple2 (Threshold, (True Positive rate, False Positive Rate)).

  40. def tptn_fpfnByThreshold: List[(Double, (Double, Double, Double, Double))]

    Permalink

    Return the True Positive and False Positive Rate with respect to the threshold, as a List of Tuple2 (Threshold, (True Positive rate, True Negative Rate, False Positive Rate, False Negative Rate)).

  41. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  43. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Metrics[Double]

Inherited from AnyRef

Inherited from Any

Ungrouped