Class

io.github.mandar2812.dynaml.models

GenContinuousMixtureModel

Related Doc: package models

Permalink

abstract class GenContinuousMixtureModel[T, I, Y, YDomain, YDomainVar, BaseDistr <: ContinuousDistr[YDomain] with Moments[YDomain, YDomainVar] with HasErrorBars[YDomain], W1 <: ContinuousRVWithDistr[YDomain, BaseDistr], BaseProcesses <: ContinuousProcessModel[T, I, Y, W1]] extends StochasticProcessMixtureModel[I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]]

A multinomial mixture of component processes, each of which can output predictive distributions which have error bars around the mean/mode.

T

The training data type of each component

I

The input feature type accepted by each component

Y

The type of the output label

YDomain

The type of a collection of outputs, e.g. vector

YDomainVar

The type of the second moment (variance) returned by the predictive distribution of each component process

BaseDistr

The type of the predictive distribution of each process.

W1

The random variable type returned by the predictiveDistribution() method of each component.

BaseProcesses

The type of the stochastic process components

Linear Supertypes
StochasticProcessMixtureModel[I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]], ContinuousProcessModel[Seq[(I, Y)], I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]], StochasticProcessModel[Seq[(I, Y)], I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]], Model[Seq[(I, Y)], I, Y], AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GenContinuousMixtureModel
  2. StochasticProcessMixtureModel
  3. ContinuousProcessModel
  4. StochasticProcessModel
  5. Model
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GenContinuousMixtureModel(component_processes: Seq[BaseProcesses], weights: DenseVector[Double])(implicit arg0: ClassTag[I])

    Permalink

    component_processes

    The stochastic processes which form the components of the mixture

    weights

    The probability weights assigned to each component.

Abstract Value Members

  1. abstract def getVectorSpace(num_dim: Int): VectorSpace[YDomain, Double]

    Permalink
    Attributes
    protected
  2. abstract def toStream(y: YDomain): Stream[Y]

    Permalink
    Attributes
    protected

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def _errorSigma: Int

    Permalink
    Definition Classes
    ContinuousProcessModel
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. val component_processes: Seq[BaseProcesses]

    Permalink

    The stochastic processes which form the components of the mixture

  8. def data: Seq[(I, Y)]

    Permalink
    Definition Classes
    Model
  9. def dataAsIndexSeq(data: Seq[(I, Y)]): Seq[I]

    Permalink

    Convert from the underlying data structure to Seq[I] where I is the index set of the GP

    Convert from the underlying data structure to Seq[I] where I is the index set of the GP

    Definition Classes
    StochasticProcessModel
  10. def dataAsSeq(data: Seq[(I, Y)]): Seq[(I, Y)]

    Permalink

    Convert from the underlying data structure to Seq[(I, Y)] where I is the index set of the GP and Y is the value/label type.

    Convert from the underlying data structure to Seq[(I, Y)] where I is the index set of the GP and Y is the value/label type.

    Definition Classes
    GenContinuousMixtureModelStochasticProcessModel
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def errorSigma_(s: Int): Unit

    Permalink
    Definition Classes
    ContinuousProcessModel
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. val g: Seq[(I, Y)]

    Permalink

    The training data

    The training data

    Attributes
    protected
    Definition Classes
    GenContinuousMixtureModelModel
  16. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. def predict(point: I): Y

    Permalink

    Predict the value of the target variable given a point.

    Predict the value of the target variable given a point.

    Definition Classes
    GenContinuousMixtureModelModel
  23. def predictionWithErrorBars[U <: Seq[I]](testData: U, sigma: Int): Seq[(I, Y, Y, Y)]

    Permalink

    Draw three predictions from the posterior predictive distribution 1) Mean or MAP estimate Y 2) Y- : The lower error bar estimate (mean - sigma*stdDeviation) 3) Y+ : The upper error bar.

    Draw three predictions from the posterior predictive distribution 1) Mean or MAP estimate Y 2) Y- : The lower error bar estimate (mean - sigma*stdDeviation) 3) Y+ : The upper error bar. (mean + sigma*stdDeviation)

    Definition Classes
    GenContinuousMixtureModelContinuousProcessModel
  24. def predictiveDistribution[U <: Seq[I]](test: U): ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]

    Permalink

    Calculates posterior predictive distribution for a particular set of test data points.

    Calculates posterior predictive distribution for a particular set of test data points.

    test

    A Sequence or Sequence like data structure storing the values of the input patters.

    Definition Classes
    GenContinuousMixtureModelStochasticProcessModel
  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def test(testData: Seq[(I, Y)]): Seq[(I, Y, Y, Y, Y)]

    Permalink

    Returns a prediction with error bars for a test set of indexes and labels.

    Returns a prediction with error bars for a test set of indexes and labels. (Index, Actual Value, Prediction, Lower Bar, Higher Bar)

    Definition Classes
    ContinuousProcessModel
  27. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. val weights: DenseVector[Double]

    Permalink

    The probability weights assigned to each component.

Inherited from StochasticProcessMixtureModel[I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]]

Inherited from ContinuousProcessModel[Seq[(I, Y)], I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]]

Inherited from StochasticProcessModel[Seq[(I, Y)], I, Y, ContMixtureRVBars[YDomain, YDomainVar, BaseDistr]]

Inherited from Model[Seq[(I, Y)], I, Y]

Inherited from AnyRef

Inherited from Any

Ungrouped