Class

io.github.mandar2812.dynaml.optimization

LSSVMLinearSolver

Related Doc: package optimization

Permalink

class LSSVMLinearSolver extends RegularizedOptimizer[DenseVector[Double], DenseVector[Double], Double, (DenseMatrix[Double], DenseVector[Double])]

Solves the linear problem resulting from applying the Karush-Kuhn-Tucker conditions on the Dual Least Squares SVM optimization problem.

Linear Supertypes
RegularizedOptimizer[DenseVector[Double], DenseVector[Double], Double, (DenseMatrix[Double], DenseVector[Double])], Optimizer[DenseVector[Double], DenseVector[Double], Double, (DenseMatrix[Double], DenseVector[Double])], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. LSSVMLinearSolver
  2. RegularizedOptimizer
  3. Optimizer
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LSSVMLinearSolver(modelTask: String)

    Permalink

    modelTask

    Set to "regression" or "classification"

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. var miniBatchFraction: Double

    Permalink
    Attributes
    protected
    Definition Classes
    RegularizedOptimizer
  13. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  14. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  16. var numIterations: Int

    Permalink
    Attributes
    protected
    Definition Classes
    RegularizedOptimizer
  17. def optimize(nPoints: Long, linearSystem: (DenseMatrix[Double], DenseVector[Double]), initialP: DenseVector[Double]): DenseVector[Double]

    Permalink

    Solve the convex optimization problem.

    Solve the convex optimization problem.

    A  =  K + γ×I 1
        1T 0
    b  =  y  
        0  

    nPoints

    The number of data points, i.e. also the size of matrix A

    linearSystem

    The components of the linear system (A, b) as a tuple.

    initialP

    An initial estimate of the linear system solution, this parameter is redundant for LSSVMLinearSolver as the exact solution is computed.

    returns

    A-1b

    Definition Classes
    LSSVMLinearSolverOptimizer
  18. var regParam: Double

    Permalink
    Attributes
    protected
    Definition Classes
    RegularizedOptimizer
  19. def setMiniBatchFraction(fraction: Double): LSSVMLinearSolver.this.type

    Permalink

    Set fraction of data to be used for each SGD iteration.

    Set fraction of data to be used for each SGD iteration. Default 1.0 (corresponding to deterministic/classical gradient descent)

    Definition Classes
    RegularizedOptimizer
  20. def setNumIterations(iters: Int): LSSVMLinearSolver.this.type

    Permalink

    Set the number of iterations for SGD.

    Set the number of iterations for SGD. Default 100.

    Definition Classes
    RegularizedOptimizer
  21. def setRegParam(regParam: Double): LSSVMLinearSolver.this.type

    Permalink

    Set the regularization parameter.

    Set the regularization parameter. Default 0.0.

    Definition Classes
    RegularizedOptimizer
  22. def setStepSize(step: Double): LSSVMLinearSolver.this.type

    Permalink

    Set the initial step size of SGD for the first step.

    Set the initial step size of SGD for the first step. Default 1.0. In subsequent steps, the step size will decrease with stepSize/sqrt(t)

    Definition Classes
    RegularizedOptimizer
  23. var stepSize: Double

    Permalink
    Attributes
    protected
    Definition Classes
    RegularizedOptimizer
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. var task: String

    Permalink
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from RegularizedOptimizer[DenseVector[Double], DenseVector[Double], Double, (DenseMatrix[Double], DenseVector[Double])]

Inherited from Optimizer[DenseVector[Double], DenseVector[Double], Double, (DenseMatrix[Double], DenseVector[Double])]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped