Class/Object

io.github.mandar2812.dynaml.probability

ApproxBayesComputation

Related Docs: object ApproxBayesComputation | package probability

Permalink

class ApproxBayesComputation[ConditioningSet, Domain] extends RandomVariable[(ConditioningSet, Domain)] with BayesJointProbabilityScheme[ConditioningSet, Domain, RandomVariable[ConditioningSet], RandomVariable[Domain]]

Linear Supertypes
BayesJointProbabilityScheme[ConditioningSet, Domain, RandomVariable[ConditioningSet], RandomVariable[Domain]], JointProbabilityScheme[ConditioningSet, Domain, RandomVariable[ConditioningSet], RandomVariable[Domain]], RandomVariable[(ConditioningSet, Domain)], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ApproxBayesComputation
  2. BayesJointProbabilityScheme
  3. JointProbabilityScheme
  4. RandomVariable
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ApproxBayesComputation(p: RandomVariable[ConditioningSet], c: DataPipe[ConditioningSet, RandomVariable[Domain]], m: (Domain, Domain) ⇒ Double)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[((ConditioningSet, Domain), Domain1)]

    Permalink

    Outputs the cartesian product between two random variables.

    Outputs the cartesian product between two random variables.

    Domain1

    The domain of the other random variable

    other

    The random variable which forms the second component of the cartesian product.

    Definition Classes
    RandomVariable
  4. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  5. def >[OtherDomain](transformation: DataPipe[(ConditioningSet, Domain), OtherDomain]): MeasurableFunction[(ConditioningSet, Domain), OtherDomain, RandomVariable[(ConditioningSet, Domain)]]

    Permalink

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Definition Classes
    RandomVariable
  6. var MAX_ITERATIONS: Int

    Permalink
    Attributes
    protected
  7. val acceptance: (Domain, Domain) ⇒ Boolean

    Permalink
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def draw: (ConditioningSet, Domain)

    Permalink

    Alias for sample.run()

    Alias for sample.run()

    Definition Classes
    RandomVariable
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. def iid(n: Int): IIDRandomVariable[(ConditioningSet, Domain), RandomVariable[(ConditioningSet, Domain)]]

    Permalink

    Create an iid random variable from the current (this)

    Create an iid random variable from the current (this)

    n

    The number of iid samples of the base random variable.

    Definition Classes
    RandomVariable
  17. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  18. val likelihood: DataPipe[ConditioningSet, RandomVariable[Domain]]

    Permalink
  19. def max_iterations_(it: Int): Unit

    Permalink
  20. val metric: (Domain, Domain) ⇒ Double

    Permalink
  21. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  24. val posterior: DataPipe[Domain, RandomVariable[ConditioningSet]]

    Permalink
  25. val prior: RandomVariable[ConditioningSet]

    Permalink
  26. val sample: DataPipe[Unit, (ConditioningSet, Domain)]

    Permalink

    Generate a sample from the random variable

    Generate a sample from the random variable

    Definition Classes
    JointProbabilitySchemeRandomVariable
  27. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  28. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  29. var tolerance: Double

    Permalink
    Attributes
    protected
  30. def tolerance_(t: Double): Unit

    Permalink
  31. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from BayesJointProbabilityScheme[ConditioningSet, Domain, RandomVariable[ConditioningSet], RandomVariable[Domain]]

Inherited from JointProbabilityScheme[ConditioningSet, Domain, RandomVariable[ConditioningSet], RandomVariable[Domain]]

Inherited from RandomVariable[(ConditioningSet, Domain)]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped