Trait

io.github.mandar2812.dynaml.probability

DiscreteRVWithDistr

Related Doc: package probability

Permalink

trait DiscreteRVWithDistr[Domain, +Distr <: DiscreteDistr[Domain]] extends RandomVariable[Domain] with RandomVarWithDistr[Domain, Distr]

Self Type
DiscreteRVWithDistr[Domain, Distr]
Linear Supertypes
RandomVarWithDistr[Domain, Distr], HasDistribution[Domain], RandomVariable[Domain], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DiscreteRVWithDistr
  2. RandomVarWithDistr
  3. HasDistribution
  4. RandomVariable
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract val underlyingDist: Distr

    Permalink

    The actual probability density function is represented as a breeze Density object.

    The actual probability density function is represented as a breeze Density object.

    Definition Classes
    DiscreteRVWithDistrRandomVarWithDistrHasDistribution

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def :*[OtherDomain, OtherDistr <: DiscreteDistr[OtherDomain]](other: DiscreteRVWithDistr[OtherDomain, OtherDistr]): DiscreteRVWithDistr[(Domain, OtherDomain), DiscreteDistr[(Domain, OtherDomain)]]

    Permalink
  4. def :*[Domain1, Dist1 <: Density[Domain1] with Rand[Domain1]](other: RandomVarWithDistr[Domain1, Dist1]): RandomVarWithDistr[(Domain, Domain1), GenericDistribution[(Domain, Domain1)]]

    Permalink

    Cartesian product with another random variables which has a defined probability distribution.

    Cartesian product with another random variables which has a defined probability distribution.

    Definition Classes
    RandomVarWithDistr
  5. def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[(Domain, Domain1)]

    Permalink

    Outputs the cartesian product between two random variables.

    Outputs the cartesian product between two random variables.

    Domain1

    The domain of the other random variable

    other

    The random variable which forms the second component of the cartesian product.

    Definition Classes
    RandomVariable
  6. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  7. def >[OtherDomain](transformation: DataPipe[Domain, OtherDomain]): MeasurableFunction[Domain, OtherDomain, RandomVariable[Domain]]

    Permalink

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Definition Classes
    RandomVariable
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def draw: Domain

    Permalink

    Alias for sample.run()

    Alias for sample.run()

    Definition Classes
    RandomVariable
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. def iid(n: Int): IIDDiscreteRVDistr[Domain, Distr, DiscreteRVWithDistr.this.type]

    Permalink

    Create an iid random variable from the current (this)

    Create an iid random variable from the current (this)

    n

    The number of iid samples of the base random variable.

    Definition Classes
    DiscreteRVWithDistrRandomVarWithDistrRandomVariable
  17. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. val sample: DataPipe[Unit, Domain]

    Permalink

    Generate a sample from the random variable

    Generate a sample from the random variable

    Definition Classes
    DiscreteRVWithDistrRandomVariable
  22. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  23. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  24. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from RandomVarWithDistr[Domain, Distr]

Inherited from HasDistribution[Domain]

Inherited from RandomVariable[Domain]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped