Class

io.github.mandar2812.dynaml.probability

GenericContinuousMCMC

Related Doc: package probability

Permalink

class GenericContinuousMCMC[ConditioningSet, Domain] extends RejectionSamplingScheme[ConditioningSet, Domain, ContinuousDistr[ConditioningSet], ContinuousDistr[Domain], AbstractContinuousDistr[(ConditioningSet, Domain)]]

Monte Carlo based bayesian inference model where the parameter space is known to be continuous and hence represented via a ContinuousDistrRV instance.

ConditioningSet

The type representing the model parameters

Domain

The type representing the observed data.

Linear Supertypes
RejectionSamplingScheme[ConditioningSet, Domain, ContinuousDistr[ConditioningSet], ContinuousDistr[Domain], AbstractContinuousDistr[(ConditioningSet, Domain)]], BayesJointProbabilityScheme[ConditioningSet, Domain, RandomVarWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], RandomVarWithDistr[Domain, ContinuousDistr[Domain]]], JointProbabilityScheme[ConditioningSet, Domain, RandomVarWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], RandomVarWithDistr[Domain, ContinuousDistr[Domain]]], RandomVarWithDistr[(ConditioningSet, Domain), AbstractContinuousDistr[(ConditioningSet, Domain)]], HasDistribution[(ConditioningSet, Domain)], RandomVariable[(ConditioningSet, Domain)], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GenericContinuousMCMC
  2. RejectionSamplingScheme
  3. BayesJointProbabilityScheme
  4. JointProbabilityScheme
  5. RandomVarWithDistr
  6. HasDistribution
  7. RandomVariable
  8. Serializable
  9. Serializable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GenericContinuousMCMC(p: ContinuousRVWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], c: DataPipe[ConditioningSet, ContinuousRVWithDistr[Domain, ContinuousDistr[Domain]]], proposalDist: ContinuousRVWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], burnIn: Long = 1000L, dropCount: Int = 100)(implicit vectorSpace: Field[ConditioningSet])

    Permalink

    p

    The prior distribution on model parameters as a DynaML random variable

    c

    The likelihood of the data given a particular value of parameters

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def :*[Domain1, Dist1 <: Density[Domain1] with Rand[Domain1]](other: RandomVarWithDistr[Domain1, Dist1]): RandomVarWithDistr[((ConditioningSet, Domain), Domain1), GenericDistribution[((ConditioningSet, Domain), Domain1)]]

    Permalink

    Cartesian product with another random variables which has a defined probability distribution.

    Cartesian product with another random variables which has a defined probability distribution.

    Definition Classes
    RandomVarWithDistr
  4. def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[((ConditioningSet, Domain), Domain1)]

    Permalink

    Outputs the cartesian product between two random variables.

    Outputs the cartesian product between two random variables.

    Domain1

    The domain of the other random variable

    other

    The random variable which forms the second component of the cartesian product.

    Definition Classes
    RandomVariable
  5. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  6. def >[OtherDomain](transformation: DataPipe[(ConditioningSet, Domain), OtherDomain]): MeasurableFunction[(ConditioningSet, Domain), OtherDomain, RandomVariable[(ConditioningSet, Domain)]]

    Permalink

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Definition Classes
    RandomVariable
  7. var Max_Candidates: Int

    Permalink
    Definition Classes
    RejectionSamplingScheme
  8. var Max_Estimations: Int

    Permalink
    Definition Classes
    RejectionSamplingScheme
  9. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  10. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. def draw: (ConditioningSet, Domain)

    Permalink

    Alias for sample.run()

    Alias for sample.run()

    Definition Classes
    RandomVariable
  12. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  14. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  17. def iid(n: Int): RandomVariable[Stream[(ConditioningSet, Domain)]] with IIDRandomVariable[(ConditioningSet, Domain), RandomVarWithDistr[(ConditioningSet, Domain), AbstractContinuousDistr[(ConditioningSet, Domain)]]]

    Permalink

    Create an iid random variable from the current (this)

    Create an iid random variable from the current (this)

    n

    The number of iid samples of the base random variable.

    Definition Classes
    RandomVarWithDistrRandomVariable
  18. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  19. val likelihood: DataPipe[ConditioningSet, RandomVarWithDistr[Domain, ContinuousDistr[Domain]]]

    Permalink
  20. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. val posterior: DataPipe[Domain, RandomVariable[ConditioningSet]]

    Permalink
  24. val prior: RandomVarWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]]

    Permalink
  25. val sample: DataPipe[Unit, (ConditioningSet, Domain)]

    Permalink

    Generate a sample from the random variable

    Generate a sample from the random variable

    Definition Classes
    RejectionSamplingSchemeJointProbabilitySchemeRandomVariable
  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  27. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  28. val underlyingDist: AbstractContinuousDistr[(ConditioningSet, Domain)]

    Permalink

    The actual probability density function is represented as a breeze Density object.

    The actual probability density function is represented as a breeze Density object.

    Definition Classes
    GenericContinuousMCMCRandomVarWithDistrHasDistribution
  29. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from RejectionSamplingScheme[ConditioningSet, Domain, ContinuousDistr[ConditioningSet], ContinuousDistr[Domain], AbstractContinuousDistr[(ConditioningSet, Domain)]]

Inherited from BayesJointProbabilityScheme[ConditioningSet, Domain, RandomVarWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], RandomVarWithDistr[Domain, ContinuousDistr[Domain]]]

Inherited from JointProbabilityScheme[ConditioningSet, Domain, RandomVarWithDistr[ConditioningSet, ContinuousDistr[ConditioningSet]], RandomVarWithDistr[Domain, ContinuousDistr[Domain]]]

Inherited from RandomVarWithDistr[(ConditioningSet, Domain), AbstractContinuousDistr[(ConditioningSet, Domain)]]

Inherited from HasDistribution[(ConditioningSet, Domain)]

Inherited from RandomVariable[(ConditioningSet, Domain)]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped