Class

io.github.mandar2812.dynaml.probability

MultinomialRV

Related Doc: package probability

Permalink

case class MultinomialRV(weights: DenseVector[Double]) extends RandomVariable[Int] with DiscreteDistrRV[Int] with Product with Serializable

A multinomial random variable i.e. draws values between 0 and N-1

Linear Supertypes
Product, Equals, DiscreteDistrRV[Int], RandomVarWithDistr[Int, DiscreteDistr[Int]], HasDistribution[Int], RandomVariable[Int], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MultinomialRV
  2. Product
  3. Equals
  4. DiscreteDistrRV
  5. RandomVarWithDistr
  6. HasDistribution
  7. RandomVariable
  8. Serializable
  9. Serializable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new MultinomialRV(weights: DenseVector[Double])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. def :*[Domain1](other: DiscreteDistrRV[Domain1]): DiscreteDistrRV[(Int, Domain1)]

    Permalink

    Cartesian product with another discrete valued random variable.

    Cartesian product with another discrete valued random variable.

    Definition Classes
    DiscreteDistrRV
  4. def :*[Domain1, Dist1 <: Density[Domain1] with Rand[Domain1]](other: RandomVarWithDistr[Domain1, Dist1]): RandomVarWithDistr[(Int, Domain1), GenericDistribution[(Int, Domain1)]]

    Permalink

    Cartesian product with another random variables which has a defined probability distribution.

    Cartesian product with another random variables which has a defined probability distribution.

    Definition Classes
    RandomVarWithDistr
  5. def :*[Domain1](other: RandomVariable[Domain1]): RandomVariable[(Int, Domain1)]

    Permalink

    Outputs the cartesian product between two random variables.

    Outputs the cartesian product between two random variables.

    Domain1

    The domain of the other random variable

    other

    The random variable which forms the second component of the cartesian product.

    Definition Classes
    RandomVariable
  6. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  7. def >[OtherDomain](transformation: DataPipe[Int, OtherDomain]): MeasurableFunction[Int, OtherDomain, RandomVariable[Int]]

    Permalink

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Transform the current random variable on Domain to a morphed random variable on OtherDomain

    Definition Classes
    RandomVariable
  8. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  9. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  10. def draw: Int

    Permalink

    Alias for sample.run()

    Alias for sample.run()

    Definition Classes
    RandomVariable
  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def iid(n: Int): RandomVariable[Stream[Int]] with IIDRandomVariable[Int, RandomVarWithDistr[Int, DiscreteDistr[Int]]]

    Permalink

    Create an iid random variable from the current (this)

    Create an iid random variable from the current (this)

    n

    The number of iid samples of the base random variable.

    Definition Classes
    RandomVarWithDistrRandomVariable
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. val sample: DataPipe[Unit, Int]

    Permalink

    Generate a sample from the random variable

    Generate a sample from the random variable

    Definition Classes
    DiscreteDistrRVRandomVariable
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  21. val underlyingDist: Multinomial[DenseVector[Double], Int]

    Permalink

    The actual probability density function is represented as a breeze Density object.

    The actual probability density function is represented as a breeze Density object.

    Definition Classes
    MultinomialRVDiscreteDistrRVRandomVarWithDistrHasDistribution
  22. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. val weights: DenseVector[Double]

    Permalink

Inherited from Product

Inherited from Equals

Inherited from DiscreteDistrRV[Int]

Inherited from RandomVarWithDistr[Int, DiscreteDistr[Int]]

Inherited from HasDistribution[Int]

Inherited from RandomVariable[Int]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped