public class PoissonVertex extends IntegerVertex implements ProbabilisticInteger, SamplableWithManyScalars<IntegerTensor>, LogProbGraphSupplier
| Constructor and Description |
|---|
PoissonVertex(double mu) |
PoissonVertex(DoubleVertex mu)
One to one constructor for mapping some shape of mu to
a matching shaped Poisson.
|
PoissonVertex(long[] shape,
double mu) |
PoissonVertex(long[] shape,
DoubleVertex mu)
One mu that must match a proposed tensor shape of Poisson.
|
PoissonVertex(Vertex<? extends NumberTensor> mu) |
| Modifier and Type | Method and Description |
|---|---|
java.util.Map<Vertex,DoubleTensor> |
dLogProb(IntegerTensor value,
java.util.Set<? extends Vertex> withRespectTo)
The partial derivatives of the natural log prob.
|
DoubleVertex |
getMu() |
double |
logProb(IntegerTensor value)
This is the natural log of the probability at the supplied value.
|
LogProbGraph |
logProbGraph() |
IntegerTensor |
sampleWithShape(long[] shape,
KeanuRandom random) |
abs, concat, div, div, divideBy, divideBy, divideBy, equalTo, getValue, greaterThan, greaterThanOrEqualTo, lambda, lambda, lessThan, lessThanOrEqualTo, loadValue, max, min, minus, minus, minus, multiply, multiply, multiply, notEqualTo, observe, observe, plus, plus, plus, pow, pow, reshape, reverseDiv, reverseMinus, saveValue, setAndCascade, setAndCascade, setValue, setValue, slice, sum, sum, take, times, times, toDouble, unaryMinusaddChild, addParent, addParents, equals, eval, getChildren, getConnectedGraph, getDegree, getId, getIndentation, getLabel, getObservedValue, getParents, getRank, getReference, getShape, getState, getValue, hashCode, hasValue, isDifferentiable, isObserved, isProbabilistic, lazyEval, observe, observeOwnValue, print, print, removeLabel, save, setAndCascade, setLabel, setLabel, setParents, setParents, setState, setValue, toString, unobserveclone, finalize, getClass, notify, notifyAll, wait, wait, waitdLogPmf, dLogPmf, dLogPmf, logPmf, logPmf, logPmfdLogProb, dLogProbAtValue, dLogProbAtValue, getValue, keepOnlyProbabilisticVertices, logProbAtValuegetObservedValue, isObserved, observe, unobservesample, sampleManyScalars, sampleManyScalarssampleWithShapepublic PoissonVertex(long[] shape,
DoubleVertex mu)
If all provided parameters are scalar then the proposed shape determines the shape
shape - the desired shape of the vertexmu - the mu of the Poisson with either the same shape as specified for this vertex or a scalarpublic PoissonVertex(long[] shape,
double mu)
public PoissonVertex(DoubleVertex mu)
mu - mu with same shape as desired Poisson tensor or scalarpublic PoissonVertex(Vertex<? extends NumberTensor> mu)
public PoissonVertex(double mu)
public DoubleVertex getMu()
public double logProb(IntegerTensor value)
ProbabilisticlogProb in interface Probabilistic<IntegerTensor>value - The supplied value.public LogProbGraph logProbGraph()
logProbGraph in interface LogProbGraphSupplierpublic java.util.Map<Vertex,DoubleTensor> dLogProb(IntegerTensor value, java.util.Set<? extends Vertex> withRespectTo)
ProbabilisticdLogProb in interface Probabilistic<IntegerTensor>value - at a given valuewithRespectTo - list of parents to differentiate with respect topublic IntegerTensor sampleWithShape(long[] shape, KeanuRandom random)
sampleWithShape in interface SamplableWithShape<IntegerTensor>