monix.execution.schedulers

AsyncScheduler

final class AsyncScheduler extends ReferenceScheduler with BatchingScheduler

An AsyncScheduler schedules tasks to be executed asynchronously, either now or in the future, by means of Javascript's setTimeout.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. AsyncScheduler
  2. BatchingScheduler
  3. ReferenceScheduler
  4. Scheduler
  5. Executor
  6. UncaughtExceptionReporter
  7. Serializable
  8. Serializable
  9. ExecutionContext
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def currentTimeMillis(): Long

    Returns the current time in milliseconds.

    Returns the current time in milliseconds. Note that while the unit of time of the return value is a millisecond, the granularity of the value depends on the underlying operating system and may be larger. For example, many operating systems measure time in units of tens of milliseconds.

    It's the equivalent of System.currentTimeMillis(). When wanting to measure time, do not use System.currentTimeMillis() directly, prefer this method instead, because then it can be mocked for testing purposes (see for example TestScheduler)

    Definition Classes
    ReferenceSchedulerScheduler
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. final def execute(runnable: Runnable): Unit

    Schedules the given command for execution at some time in the future.

    Schedules the given command for execution at some time in the future.

    The command may execute in a new thread, in a pooled thread, in the calling thread, basically at the discretion of the Scheduler implementation.

    Definition Classes
    BatchingSchedulerScheduler → Executor → ExecutionContext
  12. def executeAsync(r: Runnable): Unit

    Attributes
    protected
    Definition Classes
    AsyncSchedulerBatchingScheduler
  13. val executionModel: execution.ExecutionModel

    The ExecutionModel is a specification of how run-loops and producers should behave in regards to executing tasks either synchronously or asynchronously.

    The ExecutionModel is a specification of how run-loops and producers should behave in regards to executing tasks either synchronously or asynchronously.

    Definition Classes
    AsyncSchedulerScheduler
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  16. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  17. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  18. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  21. def prepare(): ExecutionContext

    Definition Classes
    ExecutionContext
  22. def reportFailure(t: Throwable): Unit

    Reports that an asynchronous computation failed.

    Reports that an asynchronous computation failed.

    Definition Classes
    AsyncSchedulerSchedulerUncaughtExceptionReporter → ExecutionContext
  23. def scheduleAtFixedRate(initialDelay: Long, period: Long, unit: TimeUnit, r: Runnable): Cancelable

    Schedules a periodic task that becomes enabled first after the given initial delay, and subsequently with the given period.

    Schedules a periodic task that becomes enabled first after the given initial delay, and subsequently with the given period. Executions will commence after initialDelay then initialDelay + period, then initialDelay + 2 * period and so on.

    If any execution of the task encounters an exception, subsequent executions are suppressed. Otherwise, the task will only terminate via cancellation or termination of the scheduler. If any execution of this task takes longer than its period, then subsequent executions may start late, but will not concurrently execute.

    For example the following schedules a message to be printed to standard output approximately every 10 seconds with an initial delay of 5 seconds:

    val task = scheduler.scheduleAtFixedRate(5, 10, TimeUnit.SECONDS, new Runnable {
      def run() = print("Repeated message")
    })
    
    // later if you change your mind ...
    task.cancel()
    initialDelay

    is the time to wait until the first execution happens

    period

    is the time to wait between 2 successive executions of the task

    unit

    is the time unit used for the initialDelay and the period parameters

    r

    is the callback to be executed

    returns

    a cancelable that can be used to cancel the execution of this repeated task at any time.

    Definition Classes
    ReferenceSchedulerScheduler
  24. def scheduleOnce(initialDelay: Long, unit: TimeUnit, r: Runnable): Cancelable

    Schedules a task to run in the future, after initialDelay.

    Schedules a task to run in the future, after initialDelay.

    For example the following schedules a message to be printed to standard output after 5 minutes:

    val task = scheduler.scheduleOnce(5, TimeUnit.MINUTES, new Runnable {
      def run() = print("Hello, world!")
    })
    
    // later if you change your mind ...
    task.cancel()
    initialDelay

    is the time to wait until the execution happens

    unit

    is the time unit used for initialDelay

    r

    is the callback to be executed

    returns

    a Cancelable that can be used to cancel the created task before execution.

    Definition Classes
    AsyncSchedulerScheduler
  25. def scheduleWithFixedDelay(initialDelay: Long, delay: Long, unit: TimeUnit, r: Runnable): Cancelable

    Schedules for execution a periodic task that is first executed after the given initial delay and subsequently with the given delay between the termination of one execution and the commencement of the next.

    Schedules for execution a periodic task that is first executed after the given initial delay and subsequently with the given delay between the termination of one execution and the commencement of the next.

    For example the following schedules a message to be printed to standard output every 10 seconds with an initial delay of 5 seconds:

    val task = s.scheduleWithFixedDelay(5, 10, TimeUnit.SECONDS, new Runnable {
      def run() = print("Repeated message")
    })
    
    // later if you change your mind ...
    task.cancel()
    initialDelay

    is the time to wait until the first execution happens

    delay

    is the time to wait between 2 successive executions of the task

    unit

    is the time unit used for the initialDelay and the delay parameters

    r

    is the callback to be executed

    returns

    a cancelable that can be used to cancel the execution of this repeated task at any time.

    Definition Classes
    ReferenceSchedulerScheduler
  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. def toString(): String

    Definition Classes
    AnyRef → Any
  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. def withExecutionModel(em: execution.ExecutionModel): AsyncScheduler

    Given a function that will receive the underlying ExecutionModel, returns a new Scheduler reference, based on the source, that exposes the transformed ExecutionModel when queried by means of the executionModel property.

    Given a function that will receive the underlying ExecutionModel, returns a new Scheduler reference, based on the source, that exposes the transformed ExecutionModel when queried by means of the executionModel property.

    This method enables reusing global scheduler references in a local scope, but with a slightly modified execution model to inject.

    The contract of this method (things you can rely on):

    1. the source Scheduler must not be modified in any way
    2. the implementation should wrap the source efficiently, such that the result mirrors the source Scheduler in every way except for the execution model

    Sample:

    import monix.execution.Scheduler.global
    
    implicit val scheduler = {
      val em = global.executionModel
      global.withExecutionModel(em.withAutoCancelableLoops(true))
    }
    Definition Classes
    AsyncSchedulerReferenceSchedulerScheduler

Inherited from BatchingScheduler

Inherited from ReferenceScheduler

Inherited from Scheduler

Inherited from Executor

Inherited from UncaughtExceptionReporter

Inherited from Serializable

Inherited from Serializable

Inherited from ExecutionContext

Inherited from AnyRef

Inherited from Any

Ungrouped