001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.math.analysis.interpolation;
018    
019    import org.apache.commons.math.analysis.TrivariateRealFunction;
020    import org.apache.commons.math.exception.DimensionMismatchException;
021    import org.apache.commons.math.exception.NoDataException;
022    import org.apache.commons.math.exception.OutOfRangeException;
023    import org.apache.commons.math.util.MathUtils;
024    
025    /**
026     * Function that implements the
027     * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation">
028     * tricubic spline interpolation</a>, as proposed in
029     * <quote>
030     *  Tricubic interpolation in three dimensions<br/>
031     *  F. Lekien and J. Marsden<br/>
032     *  <em>Int. J. Numer. Meth. Engng</em> 2005; <b>63</b>:455-471
033     * </quote>
034     *
035     * @version $Revision$ $Date$
036     * @since 2.2
037     */
038    public class TricubicSplineInterpolatingFunction
039        implements TrivariateRealFunction {
040        /**
041         * Matrix to compute the spline coefficients from the function values
042         * and function derivatives values
043         */
044        private static final double[][] AINV = {
045            { 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
046            { 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
047            { -3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
048            { 2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
049            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
050            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
051            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
052            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
053            { -3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
054            { 0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
055            { 9,-9,-9,9,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,4,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
056            { -6,6,6,-6,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
057            { 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
058            { 0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
059            { -6,6,6,-6,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
060            { 4,-4,-4,4,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
061            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
062            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
063            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
064            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
065            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
066            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
067            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0 },
068            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0 },
069            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
070            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
071            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,4,2,2,1,0,0,0,0 },
072            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,-2,-2,-1,-1,0,0,0,0 },
073            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
074            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0 },
075            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,-2,-1,-2,-1,0,0,0,0 },
076            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,1,1,1,1,0,0,0,0 },
077            {-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
078            { 0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
079            { 9,-9,0,0,-9,9,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,4,2,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
080            { -6,6,0,0,6,-6,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
081            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 },
082            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0 },
083            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,0,0,-9,9,0,0,0,0,0,0,0,0,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,4,2,0,0,2,1,0,0 },
084            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,-2,-2,0,0,-1,-1,0,0 },
085            { 9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0,0,0,0,0,0,0,0,0 },
086            { 0,0,0,0,0,0,0,0,9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0 },
087            { -27,27,27,-27,27,-27,-27,27,-18,-9,18,9,18,9,-18,-9,-18,18,-9,9,18,-18,9,-9,-18,18,18,-18,-9,9,9,-9,-12,-6,-6,-3,12,6,6,3,-12,-6,12,6,-6,-3,6,3,-12,12,-6,6,-6,6,-3,3,-8,-4,-4,-2,-4,-2,-2,-1 },
088            { 18,-18,-18,18,-18,18,18,-18,9,9,-9,-9,-9,-9,9,9,12,-12,6,-6,-12,12,-6,6,12,-12,-12,12,6,-6,-6,6,6,6,3,3,-6,-6,-3,-3,6,6,-6,-6,3,3,-3,-3,8,-8,4,-4,4,-4,2,-2,4,4,2,2,2,2,1,1 },
089            { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0,0,0,0,0,0,0,0,0 },
090            { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0 },
091            { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,9,-9,9,-9,-9,9,-9,9,12,-12,-12,12,6,-6,-6,6,6,3,6,3,-6,-3,-6,-3,8,4,-8,-4,4,2,-4,-2,6,-6,6,-6,3,-3,3,-3,4,2,4,2,2,1,2,1 },
092            { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-6,6,-6,6,6,-6,6,-6,-8,8,8,-8,-4,4,4,-4,-3,-3,-3,-3,3,3,3,3,-4,-4,4,4,-2,-2,2,2,-4,4,-4,4,-2,2,-2,2,-2,-2,-2,-2,-1,-1,-1,-1 },
093            { 2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
094            { 0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
095            { -6,6,0,0,6,-6,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
096            { 4,-4,0,0,-4,4,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
097            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
098            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0 },
099            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,-2,-1,0,0,-2,-1,0,0 },
100            { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,1,1,0,0,1,1,0,0 },
101            { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0,0,0,0,0,0,0,0,0 },
102            { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0 },
103            { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,12,-12,6,-6,-12,12,-6,6,9,-9,-9,9,9,-9,-9,9,8,4,4,2,-8,-4,-4,-2,6,3,-6,-3,6,3,-6,-3,6,-6,3,-3,6,-6,3,-3,4,2,2,1,4,2,2,1 },
104            { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-8,8,-4,4,8,-8,4,-4,-6,6,6,-6,-6,6,6,-6,-4,-4,-2,-2,4,4,2,2,-3,-3,3,3,-3,-3,3,3,-4,4,-2,2,-4,4,-2,2,-2,-2,-1,-1,-2,-2,-1,-1 },
105            { 4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0 },
106            { 0,0,0,0,0,0,0,0,4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0 },
107            { -12,12,12,-12,12,-12,-12,12,-8,-4,8,4,8,4,-8,-4,-6,6,-6,6,6,-6,6,-6,-6,6,6,-6,-6,6,6,-6,-4,-2,-4,-2,4,2,4,2,-4,-2,4,2,-4,-2,4,2,-3,3,-3,3,-3,3,-3,3,-2,-1,-2,-1,-2,-1,-2,-1 },
108            { 8,-8,-8,8,-8,8,8,-8,4,4,-4,-4,-4,-4,4,4,4,-4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,-4,4,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,1,1,1,1,1,1,1,1 }
109        };
110    
111        /** Samples x-coordinates */
112        private final double[] xval;
113        /** Samples y-coordinates */
114        private final double[] yval;
115        /** Samples z-coordinates */
116        private final double[] zval;
117        /** Set of cubic splines pacthing the whole data grid */
118        private final TricubicSplineFunction[][][] splines;
119    
120        /**
121         * @param x Sample values of the x-coordinate, in increasing order.
122         * @param y Sample values of the y-coordinate, in increasing order.
123         * @param z Sample values of the y-coordinate, in increasing order.
124         * @param f Values of the function on every grid point.
125         * @param dFdX Values of the partial derivative of function with respect
126         * to x on every grid point.
127         * @param dFdY Values of the partial derivative of function with respect
128         * to y on every grid point.
129         * @param dFdZ Values of the partial derivative of function with respect
130         * to z on every grid point.
131         * @param d2FdXdY Values of the cross partial derivative of function on
132         * every grid point.
133         * @param d2FdXdZ Values of the cross partial derivative of function on
134         * every grid point.
135         * @param d2FdYdZ Values of the cross partial derivative of function on
136         * every grid point.
137         * @param d3FdXdYdZ Values of the cross partial derivative of function on
138         * every grid point.
139         * @throws NoDataException if any of the arrays has zero length.
140         * @throws DimensionMismatchException if the various arrays do not contain
141         * the expected number of elements.
142         * @throws IllegalArgumentException if {@code x}, {@code y} or {@code z}
143         * are not strictly increasing.
144         */
145        public TricubicSplineInterpolatingFunction(double[] x,
146                                                   double[] y,
147                                                   double[] z,
148                                                   double[][][] f,
149                                                   double[][][] dFdX,
150                                                   double[][][] dFdY,
151                                                   double[][][] dFdZ,
152                                                   double[][][] d2FdXdY,
153                                                   double[][][] d2FdXdZ,
154                                                   double[][][] d2FdYdZ,
155                                                   double[][][] d3FdXdYdZ) {
156            final int xLen = x.length;
157            final int yLen = y.length;
158            final int zLen = z.length;
159    
160            if (xLen == 0 || yLen == 0 || z.length == 0 || f.length == 0 || f[0].length == 0) {
161                throw new NoDataException();
162            }
163            if (xLen != f.length) {
164                throw new DimensionMismatchException(xLen, f.length);
165            }
166            if (xLen != dFdX.length) {
167                throw new DimensionMismatchException(xLen, dFdX.length);
168            }
169            if (xLen != dFdY.length) {
170                throw new DimensionMismatchException(xLen, dFdY.length);
171            }
172            if (xLen != dFdZ.length) {
173                throw new DimensionMismatchException(xLen, dFdZ.length);
174            }
175            if (xLen != d2FdXdY.length) {
176                throw new DimensionMismatchException(xLen, d2FdXdY.length);
177            }
178            if (xLen != d2FdXdZ.length) {
179                throw new DimensionMismatchException(xLen, d2FdXdZ.length);
180            }
181            if (xLen != d2FdYdZ.length) {
182                throw new DimensionMismatchException(xLen, d2FdYdZ.length);
183            }
184            if (xLen != d3FdXdYdZ.length) {
185                throw new DimensionMismatchException(xLen, d3FdXdYdZ.length);
186            }
187    
188            MathUtils.checkOrder(x);
189            MathUtils.checkOrder(y);
190            MathUtils.checkOrder(z);
191    
192            xval = x.clone();
193            yval = y.clone();
194            zval = z.clone();
195    
196            final int lastI = xLen - 1;
197            final int lastJ = yLen - 1;
198            final int lastK = zLen - 1;
199            splines = new TricubicSplineFunction[lastI][lastJ][lastK];
200    
201            for (int i = 0; i < lastI; i++) {
202                if (f[i].length != yLen) {
203                    throw new DimensionMismatchException(f[i].length, yLen);
204                }
205                if (dFdX[i].length != yLen) {
206                    throw new DimensionMismatchException(dFdX[i].length, yLen);
207                }
208                if (dFdY[i].length != yLen) {
209                    throw new DimensionMismatchException(dFdY[i].length, yLen);
210                }
211                if (dFdZ[i].length != yLen) {
212                    throw new DimensionMismatchException(dFdZ[i].length, yLen);
213                }
214                if (d2FdXdY[i].length != yLen) {
215                    throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
216                }
217                if (d2FdXdZ[i].length != yLen) {
218                    throw new DimensionMismatchException(d2FdXdZ[i].length, yLen);
219                }
220                if (d2FdYdZ[i].length != yLen) {
221                    throw new DimensionMismatchException(d2FdYdZ[i].length, yLen);
222                }
223                if (d3FdXdYdZ[i].length != yLen) {
224                    throw new DimensionMismatchException(d3FdXdYdZ[i].length, yLen);
225                }
226    
227                final int ip1 = i + 1;
228                for (int j = 0; j < lastJ; j++) {
229                    if (f[i][j].length != zLen) {
230                        throw new DimensionMismatchException(f[i][j].length, zLen);
231                    }
232                    if (dFdX[i][j].length != zLen) {
233                        throw new DimensionMismatchException(dFdX[i][j].length, zLen);
234                    }
235                    if (dFdY[i][j].length != zLen) {
236                        throw new DimensionMismatchException(dFdY[i][j].length, zLen);
237                    }
238                    if (dFdZ[i][j].length != zLen) {
239                        throw new DimensionMismatchException(dFdZ[i][j].length, zLen);
240                    }
241                    if (d2FdXdY[i][j].length != zLen) {
242                        throw new DimensionMismatchException(d2FdXdY[i][j].length, zLen);
243                    }
244                    if (d2FdXdZ[i][j].length != zLen) {
245                        throw new DimensionMismatchException(d2FdXdZ[i][j].length, zLen);
246                    }
247                    if (d2FdYdZ[i][j].length != zLen) {
248                        throw new DimensionMismatchException(d2FdYdZ[i][j].length, zLen);
249                    }
250                    if (d3FdXdYdZ[i][j].length != zLen) {
251                        throw new DimensionMismatchException(d3FdXdYdZ[i][j].length, zLen);
252                    }
253    
254                    final int jp1 = j + 1;
255                    for (int k = 0; k < lastK; k++) {
256                        final int kp1 = k + 1;
257    
258                        final double[] beta = new double[] {
259                            f[i][j][k], f[ip1][j][k],
260                            f[i][jp1][k], f[ip1][jp1][k],
261                            f[i][j][kp1], f[ip1][j][kp1],
262                            f[i][jp1][kp1], f[ip1][jp1][kp1],
263    
264                            dFdX[i][j][k], dFdX[ip1][j][k],
265                            dFdX[i][jp1][k], dFdX[ip1][jp1][k],
266                            dFdX[i][j][kp1], dFdX[ip1][j][kp1],
267                            dFdX[i][jp1][kp1], dFdX[ip1][jp1][kp1],
268    
269                            dFdY[i][j][k], dFdY[ip1][j][k],
270                            dFdY[i][jp1][k], dFdY[ip1][jp1][k],
271                            dFdY[i][j][kp1], dFdY[ip1][j][kp1],
272                            dFdY[i][jp1][kp1], dFdY[ip1][jp1][kp1],
273    
274                            dFdZ[i][j][k], dFdZ[ip1][j][k],
275                            dFdZ[i][jp1][k], dFdZ[ip1][jp1][k],
276                            dFdZ[i][j][kp1], dFdZ[ip1][j][kp1],
277                            dFdZ[i][jp1][kp1], dFdZ[ip1][jp1][kp1],
278    
279                            d2FdXdY[i][j][k], d2FdXdY[ip1][j][k],
280                            d2FdXdY[i][jp1][k], d2FdXdY[ip1][jp1][k],
281                            d2FdXdY[i][j][kp1], d2FdXdY[ip1][j][kp1],
282                            d2FdXdY[i][jp1][kp1], d2FdXdY[ip1][jp1][kp1],
283    
284                            d2FdXdZ[i][j][k], d2FdXdZ[ip1][j][k],
285                            d2FdXdZ[i][jp1][k], d2FdXdZ[ip1][jp1][k],
286                            d2FdXdZ[i][j][kp1], d2FdXdZ[ip1][j][kp1],
287                            d2FdXdZ[i][jp1][kp1], d2FdXdZ[ip1][jp1][kp1],
288    
289                            d2FdYdZ[i][j][k], d2FdYdZ[ip1][j][k],
290                            d2FdYdZ[i][jp1][k], d2FdYdZ[ip1][jp1][k],
291                            d2FdYdZ[i][j][kp1], d2FdYdZ[ip1][j][kp1],
292                            d2FdYdZ[i][jp1][kp1], d2FdYdZ[ip1][jp1][kp1],
293    
294                            d3FdXdYdZ[i][j][k], d3FdXdYdZ[ip1][j][k],
295                            d3FdXdYdZ[i][jp1][k], d3FdXdYdZ[ip1][jp1][k],
296                            d3FdXdYdZ[i][j][kp1], d3FdXdYdZ[ip1][j][kp1],
297                            d3FdXdYdZ[i][jp1][kp1], d3FdXdYdZ[ip1][jp1][kp1],
298                        };
299    
300                        splines[i][j][k] = new TricubicSplineFunction(computeSplineCoefficients(beta));
301                    }
302                }
303            }
304        }
305    
306        /**
307         * {@inheritDoc}
308         */
309        public double value(double x, double y, double z) {
310            final int i = searchIndex(x, xval);
311            if (i == -1) {
312                throw new OutOfRangeException(x, xval[0], xval[xval.length - 1]);
313            }
314            final int j = searchIndex(y, yval);
315            if (j == -1) {
316                throw new OutOfRangeException(y, yval[0], yval[yval.length - 1]);
317            }
318            final int k = searchIndex(z, zval);
319            if (k == -1) {
320                throw new OutOfRangeException(z, zval[0], zval[zval.length - 1]);
321            }
322    
323            final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
324            final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
325            final double zN = (z - zval[k]) / (zval[k + 1] - zval[k]);
326    
327            return splines[i][j][k].value(xN, yN, zN);
328        }
329    
330        /**
331         * @param c Coordinate.
332         * @param val Coordinate samples.
333         * @return the index in {@code val} corresponding to the interval
334         * containing {@code c}, or {@code -1} if {@code c} is out of the
335         * range defined by the end values of {@code val}.
336         */
337        private int searchIndex(double c, double[] val) {
338            if (c < val[0]) {
339                return -1;
340            }
341    
342            final int max = val.length;
343            for (int i = 1; i < max; i++) {
344                if (c <= val[i]) {
345                    return i - 1;
346                }
347            }
348    
349            return -1;
350        }
351    
352        /**
353         * Compute the spline coefficients from the list of function values and
354         * function partial derivatives values at the four corners of a grid
355         * element. They must be specified in the following order:
356         * <ul>
357         *  <li>f(0,0,0)</li>
358         *  <li>f(1,0,0)</li>
359         *  <li>f(0,1,0)</li>
360         *  <li>f(1,1,0)</li>
361         *  <li>f(0,0,1)</li>
362         *  <li>f(1,0,1)</li>
363         *  <li>f(0,1,1)</li>
364         *  <li>f(1,1,1)</li>
365         *
366         *  <li>f<sub>x</sub>(0,0,0)</li>
367         *  <li>... <em>(same order as above)</em></li>
368         *  <li>f<sub>x</sub>(1,1,1)</li>
369         *
370         *  <li>f<sub>y</sub>(0,0,0)</li>
371         *  <li>... <em>(same order as above)</em></li>
372         *  <li>f<sub>y</sub>(1,1,1)</li>
373         *
374         *  <li>f<sub>z</sub>(0,0,0)</li>
375         *  <li>... <em>(same order as above)</em></li>
376         *  <li>f<sub>z</sub>(1,1,1)</li>
377         *
378         *  <li>f<sub>xy</sub>(0,0,0)</li>
379         *  <li>... <em>(same order as above)</em></li>
380         *  <li>f<sub>xy</sub>(1,1,1)</li>
381         *
382         *  <li>f<sub>xz</sub>(0,0,0)</li>
383         *  <li>... <em>(same order as above)</em></li>
384         *  <li>f<sub>xz</sub>(1,1,1)</li>
385         *
386         *  <li>f<sub>yz</sub>(0,0,0)</li>
387         *  <li>... <em>(same order as above)</em></li>
388         *  <li>f<sub>yz</sub>(1,1,1)</li>
389         *
390         *  <li>f<sub>xyz</sub>(0,0,0)</li>
391         *  <li>... <em>(same order as above)</em></li>
392         *  <li>f<sub>xyz</sub>(1,1,1)</li>
393         * </ul>
394         * where the subscripts indicate the partial derivative with respect to
395         * the corresponding variable(s).
396         *
397         * @param beta List of function values and function partial derivatives
398         * values.
399         * @return the spline coefficients.
400         */
401        private double[] computeSplineCoefficients(double[] beta) {
402            final int sz = 64;
403            final double[] a = new double[sz];
404    
405            for (int i = 0; i < sz; i++) {
406                double result = 0;
407                final double[] row = AINV[i];
408                for (int j = 0; j < sz; j++) {
409                    result += row[j] * beta[j];
410                }
411                a[i] = result;
412            }
413    
414            return a;
415        }
416    }
417    
418    /**
419     * 3D-spline function.
420     *
421     * @version $Revision$ $Date$
422     */
423    class TricubicSplineFunction
424        implements TrivariateRealFunction {
425        /** Number of points. */
426        private static final short N = 4;
427        /** Coefficients */
428        private final double[][][] a = new double[N][N][N];
429    
430        /**
431         * @param aV List of spline coefficients.
432         */
433        public TricubicSplineFunction(double[] aV) {
434            for (int i = 0; i < N; i++) {
435                for (int j = 0; j < N; j++) {
436                    for (int k = 0; k < N; k++) {
437                        a[i][j][k] = aV[i + N * (j + N * k)];
438                    }
439                }
440            }
441        }
442    
443        /**
444         * @param x x-coordinate of the interpolation point.
445         * @param y y-coordinate of the interpolation point.
446         * @param z z-coordinate of the interpolation point.
447         * @return the interpolated value.
448         */
449        public double value(double x, double y, double z) {
450            if (x < 0 || x > 1) {
451                throw new OutOfRangeException(x, 0, 1);
452            }
453            if (y < 0 || y > 1) {
454                throw new OutOfRangeException(y, 0, 1);
455            }
456            if (z < 0 || z > 1) {
457                throw new OutOfRangeException(z, 0, 1);
458            }
459    
460            final double x2 = x * x;
461            final double x3 = x2 * x;
462            final double[] pX = { 1, x, x2, x3 };
463    
464            final double y2 = y * y;
465            final double y3 = y2 * y;
466            final double[] pY = { 1, y, y2, y3 };
467    
468            final double z2 = z * z;
469            final double z3 = z2 * z;
470            final double[] pZ = { 1, z, z2, z3 };
471    
472            double result = 0;
473            for (int i = 0; i < N; i++) {
474                for (int j = 0; j < N; j++) {
475                    for (int k = 0; k < N; k++) {
476                        result += a[i][j][k] * pX[i] * pY[j] * pZ[k];
477                    }
478                }
479            }
480    
481            return result;
482        }
483    }