001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.math.distribution;
018    
019    import java.io.Serializable;
020    
021    import org.apache.commons.math.ConvergenceException;
022    import org.apache.commons.math.MathException;
023    import org.apache.commons.math.MathRuntimeException;
024    import org.apache.commons.math.analysis.UnivariateRealFunction;
025    import org.apache.commons.math.analysis.solvers.BrentSolver;
026    import org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils;
027    import org.apache.commons.math.FunctionEvaluationException;
028    import org.apache.commons.math.exception.util.LocalizedFormats;
029    import org.apache.commons.math.random.RandomDataImpl;
030    import org.apache.commons.math.util.FastMath;
031    
032    /**
033     * Base class for continuous distributions.  Default implementations are
034     * provided for some of the methods that do not vary from distribution to
035     * distribution.
036     *
037     * @version $Revision: 1073498 $ $Date: 2011-02-22 21:57:26 +0100 (mar. 22 f??vr. 2011) $
038     */
039    public abstract class AbstractContinuousDistribution
040        extends AbstractDistribution
041        implements ContinuousDistribution, Serializable {
042    
043        /** Serializable version identifier */
044        private static final long serialVersionUID = -38038050983108802L;
045    
046        /**
047         * RandomData instance used to generate samples from the distribution
048         * @since 2.2
049         */
050        protected final RandomDataImpl randomData = new RandomDataImpl();
051    
052        /**
053         * Solver absolute accuracy for inverse cumulative computation
054         * @since 2.1
055         */
056        private double solverAbsoluteAccuracy = BrentSolver.DEFAULT_ABSOLUTE_ACCURACY;
057    
058        /**
059         * Default constructor.
060         */
061        protected AbstractContinuousDistribution() {
062            super();
063        }
064    
065        /**
066         * Return the probability density for a particular point.
067         * @param x  The point at which the density should be computed.
068         * @return  The pdf at point x.
069         * @throws MathRuntimeException if the specialized class hasn't implemented this function
070         * @since 2.1
071         */
072        public double density(double x) throws MathRuntimeException {
073            throw new MathRuntimeException(new UnsupportedOperationException(),
074                    LocalizedFormats.NO_DENSITY_FOR_THIS_DISTRIBUTION);
075        }
076    
077        /**
078         * For this distribution, X, this method returns the critical point x, such
079         * that P(X &lt; x) = <code>p</code>.
080         *
081         * @param p the desired probability
082         * @return x, such that P(X &lt; x) = <code>p</code>
083         * @throws MathException if the inverse cumulative probability can not be
084         *         computed due to convergence or other numerical errors.
085         * @throws IllegalArgumentException if <code>p</code> is not a valid
086         *         probability.
087         */
088        public double inverseCumulativeProbability(final double p)
089            throws MathException {
090            if (p < 0.0 || p > 1.0) {
091                throw MathRuntimeException.createIllegalArgumentException(
092                      LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
093            }
094    
095            // by default, do simple root finding using bracketing and default solver.
096            // subclasses can override if there is a better method.
097            UnivariateRealFunction rootFindingFunction =
098                new UnivariateRealFunction() {
099                public double value(double x) throws FunctionEvaluationException {
100                    double ret = Double.NaN;
101                    try {
102                        ret = cumulativeProbability(x) - p;
103                    } catch (MathException ex) {
104                        throw new FunctionEvaluationException(x, ex.getSpecificPattern(), ex.getGeneralPattern(), ex.getArguments());
105                    }
106                    if (Double.isNaN(ret)) {
107                        throw new FunctionEvaluationException(x, LocalizedFormats.CUMULATIVE_PROBABILITY_RETURNED_NAN, x, p);
108                    }
109                    return ret;
110                }
111            };
112    
113            // Try to bracket root, test domain endpoints if this fails
114            double lowerBound = getDomainLowerBound(p);
115            double upperBound = getDomainUpperBound(p);
116            double[] bracket = null;
117            try {
118                bracket = UnivariateRealSolverUtils.bracket(
119                        rootFindingFunction, getInitialDomain(p),
120                        lowerBound, upperBound);
121            }  catch (ConvergenceException ex) {
122                /*
123                 * Check domain endpoints to see if one gives value that is within
124                 * the default solver's defaultAbsoluteAccuracy of 0 (will be the
125                 * case if density has bounded support and p is 0 or 1).
126                 */
127                if (FastMath.abs(rootFindingFunction.value(lowerBound)) < getSolverAbsoluteAccuracy()) {
128                    return lowerBound;
129                }
130                if (FastMath.abs(rootFindingFunction.value(upperBound)) < getSolverAbsoluteAccuracy()) {
131                    return upperBound;
132                }
133                // Failed bracket convergence was not because of corner solution
134                throw new MathException(ex);
135            }
136    
137            // find root
138            double root = UnivariateRealSolverUtils.solve(rootFindingFunction,
139                    // override getSolverAbsoluteAccuracy() to use a Brent solver with
140                    // absolute accuracy different from BrentSolver default
141                    bracket[0],bracket[1], getSolverAbsoluteAccuracy());
142            return root;
143        }
144    
145        /**
146         * Reseeds the random generator used to generate samples.
147         *
148         * @param seed the new seed
149         * @since 2.2
150         */
151        public void reseedRandomGenerator(long seed) {
152            randomData.reSeed(seed);
153        }
154    
155        /**
156         * Generates a random value sampled from this distribution. The default
157         * implementation uses the
158         * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
159         *
160         * @return random value
161         * @since 2.2
162         * @throws MathException if an error occurs generating the random value
163         */
164        public double sample() throws MathException {
165            return randomData.nextInversionDeviate(this);
166        }
167    
168        /**
169         * Generates a random sample from the distribution.  The default implementation
170         * generates the sample by calling {@link #sample()} in a loop.
171         *
172         * @param sampleSize number of random values to generate
173         * @since 2.2
174         * @return an array representing the random sample
175         * @throws MathException if an error occurs generating the sample
176         * @throws IllegalArgumentException if sampleSize is not positive
177         */
178        public double[] sample(int sampleSize) throws MathException {
179            if (sampleSize <= 0) {
180                MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize);
181            }
182            double[] out = new double[sampleSize];
183            for (int i = 0; i < sampleSize; i++) {
184                out[i] = sample();
185            }
186            return out;
187        }
188    
189        /**
190         * Access the initial domain value, based on <code>p</code>, used to
191         * bracket a CDF root.  This method is used by
192         * {@link #inverseCumulativeProbability(double)} to find critical values.
193         *
194         * @param p the desired probability for the critical value
195         * @return initial domain value
196         */
197        protected abstract double getInitialDomain(double p);
198    
199        /**
200         * Access the domain value lower bound, based on <code>p</code>, used to
201         * bracket a CDF root.  This method is used by
202         * {@link #inverseCumulativeProbability(double)} to find critical values.
203         *
204         * @param p the desired probability for the critical value
205         * @return domain value lower bound, i.e.
206         *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
207         */
208        protected abstract double getDomainLowerBound(double p);
209    
210        /**
211         * Access the domain value upper bound, based on <code>p</code>, used to
212         * bracket a CDF root.  This method is used by
213         * {@link #inverseCumulativeProbability(double)} to find critical values.
214         *
215         * @param p the desired probability for the critical value
216         * @return domain value upper bound, i.e.
217         *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
218         */
219        protected abstract double getDomainUpperBound(double p);
220    
221        /**
222         * Returns the solver absolute accuracy for inverse cumulative computation.
223         *
224         * @return the maximum absolute error in inverse cumulative probability estimates
225         * @since 2.1
226         */
227        protected double getSolverAbsoluteAccuracy() {
228            return solverAbsoluteAccuracy;
229        }
230    
231    }