001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.math.distribution;
018    
019    import java.io.Serializable;
020    
021    import org.apache.commons.math.MathException;
022    import org.apache.commons.math.MathRuntimeException;
023    import org.apache.commons.math.exception.util.LocalizedFormats;
024    import org.apache.commons.math.random.RandomDataImpl;
025    import org.apache.commons.math.util.FastMath;
026    
027    
028    /**
029     * Base class for integer-valued discrete distributions.  Default
030     * implementations are provided for some of the methods that do not vary
031     * from distribution to distribution.
032     *
033     * @version $Revision: 1067494 $ $Date: 2011-02-05 20:49:07 +0100 (sam. 05 f??vr. 2011) $
034     */
035    public abstract class AbstractIntegerDistribution extends AbstractDistribution
036        implements IntegerDistribution, Serializable {
037    
038       /** Serializable version identifier */
039        private static final long serialVersionUID = -1146319659338487221L;
040    
041        /**
042         * RandomData instance used to generate samples from the distribution
043         * @since 2.2
044         */
045        protected final RandomDataImpl randomData = new RandomDataImpl();
046    
047        /**
048         * Default constructor.
049         */
050        protected AbstractIntegerDistribution() {
051            super();
052        }
053    
054        /**
055         * For a random variable X whose values are distributed according
056         * to this distribution, this method returns P(X ≤ x).  In other words,
057         * this method represents the  (cumulative) distribution function, or
058         * CDF, for this distribution.
059         * <p>
060         * If <code>x</code> does not represent an integer value, the CDF is
061         * evaluated at the greatest integer less than x.
062         *
063         * @param x the value at which the distribution function is evaluated.
064         * @return cumulative probability that a random variable with this
065         * distribution takes a value less than or equal to <code>x</code>
066         * @throws MathException if the cumulative probability can not be
067         * computed due to convergence or other numerical errors.
068         */
069        public double cumulativeProbability(double x) throws MathException {
070            return cumulativeProbability((int) FastMath.floor(x));
071        }
072    
073        /**
074         * For a random variable X whose values are distributed according
075         * to this distribution, this method returns P(x0 &le; X &le; x1).
076         *
077         * @param x0 the (inclusive) lower bound
078         * @param x1 the (inclusive) upper bound
079         * @return the probability that a random variable with this distribution
080         * will take a value between <code>x0</code> and <code>x1</code>,
081         * including the endpoints.
082         * @throws MathException if the cumulative probability can not be
083         * computed due to convergence or other numerical errors.
084         * @throws IllegalArgumentException if <code>x0 > x1</code>
085         */
086        @Override
087        public double cumulativeProbability(double x0, double x1)
088            throws MathException {
089            if (x0 > x1) {
090                throw MathRuntimeException.createIllegalArgumentException(
091                      LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1);
092            }
093            if (FastMath.floor(x0) < x0) {
094                return cumulativeProbability(((int) FastMath.floor(x0)) + 1,
095                   (int) FastMath.floor(x1)); // don't want to count mass below x0
096            } else { // x0 is mathematical integer, so use as is
097                return cumulativeProbability((int) FastMath.floor(x0),
098                    (int) FastMath.floor(x1));
099            }
100        }
101    
102        /**
103         * For a random variable X whose values are distributed according
104         * to this distribution, this method returns P(X &le; x).  In other words,
105         * this method represents the probability distribution function, or PDF,
106         * for this distribution.
107         *
108         * @param x the value at which the PDF is evaluated.
109         * @return PDF for this distribution.
110         * @throws MathException if the cumulative probability can not be
111         *            computed due to convergence or other numerical errors.
112         */
113        public abstract double cumulativeProbability(int x) throws MathException;
114    
115        /**
116         * For a random variable X whose values are distributed according
117         * to this distribution, this method returns P(X = x). In other words, this
118         * method represents the probability mass function,  or PMF, for the distribution.
119         * <p>
120         * If <code>x</code> does not represent an integer value, 0 is returned.
121         *
122         * @param x the value at which the probability density function is evaluated
123         * @return the value of the probability density function at x
124         */
125        public double probability(double x) {
126            double fl = FastMath.floor(x);
127            if (fl == x) {
128                return this.probability((int) x);
129            } else {
130                return 0;
131            }
132        }
133    
134        /**
135        * For a random variable X whose values are distributed according
136         * to this distribution, this method returns P(x0 &le; X &le; x1).
137         *
138         * @param x0 the inclusive, lower bound
139         * @param x1 the inclusive, upper bound
140         * @return the cumulative probability.
141         * @throws MathException if the cumulative probability can not be
142         *            computed due to convergence or other numerical errors.
143         * @throws IllegalArgumentException if x0 > x1
144         */
145        public double cumulativeProbability(int x0, int x1) throws MathException {
146            if (x0 > x1) {
147                throw MathRuntimeException.createIllegalArgumentException(
148                      LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1);
149            }
150            return cumulativeProbability(x1) - cumulativeProbability(x0 - 1);
151        }
152    
153        /**
154         * For a random variable X whose values are distributed according
155         * to this distribution, this method returns the largest x, such
156         * that P(X &le; x) &le; <code>p</code>.
157         *
158         * @param p the desired probability
159         * @return the largest x such that P(X &le; x) <= p
160         * @throws MathException if the inverse cumulative probability can not be
161         *            computed due to convergence or other numerical errors.
162         * @throws IllegalArgumentException if p < 0 or p > 1
163         */
164        public int inverseCumulativeProbability(final double p) throws MathException{
165            if (p < 0.0 || p > 1.0) {
166                throw MathRuntimeException.createIllegalArgumentException(
167                      LocalizedFormats.OUT_OF_RANGE_SIMPLE, p, 0.0, 1.0);
168            }
169    
170            // by default, do simple bisection.
171            // subclasses can override if there is a better method.
172            int x0 = getDomainLowerBound(p);
173            int x1 = getDomainUpperBound(p);
174            double pm;
175            while (x0 < x1) {
176                int xm = x0 + (x1 - x0) / 2;
177                pm = checkedCumulativeProbability(xm);
178                if (pm > p) {
179                    // update x1
180                    if (xm == x1) {
181                        // this can happen with integer division
182                        // simply decrement x1
183                        --x1;
184                    } else {
185                        // update x1 normally
186                        x1 = xm;
187                    }
188                } else {
189                    // update x0
190                    if (xm == x0) {
191                        // this can happen with integer division
192                        // simply increment x0
193                        ++x0;
194                    } else {
195                        // update x0 normally
196                        x0 = xm;
197                    }
198                }
199            }
200    
201            // insure x0 is the correct critical point
202            pm = checkedCumulativeProbability(x0);
203            while (pm > p) {
204                --x0;
205                pm = checkedCumulativeProbability(x0);
206            }
207    
208            return x0;
209        }
210    
211        /**
212         * Reseeds the random generator used to generate samples.
213         *
214         * @param seed the new seed
215         * @since 2.2
216         */
217        public void reseedRandomGenerator(long seed) {
218            randomData.reSeed(seed);
219        }
220    
221        /**
222         * Generates a random value sampled from this distribution. The default
223         * implementation uses the
224         * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling"> inversion method.</a>
225         *
226         * @return random value
227         * @since 2.2
228         * @throws MathException if an error occurs generating the random value
229         */
230        public int sample() throws MathException {
231            return randomData.nextInversionDeviate(this);
232        }
233    
234        /**
235         * Generates a random sample from the distribution.  The default implementation
236         * generates the sample by calling {@link #sample()} in a loop.
237         *
238         * @param sampleSize number of random values to generate
239         * @since 2.2
240         * @return an array representing the random sample
241         * @throws MathException if an error occurs generating the sample
242         * @throws IllegalArgumentException if sampleSize is not positive
243         */
244        public int[] sample(int sampleSize) throws MathException {
245            if (sampleSize <= 0) {
246                MathRuntimeException.createIllegalArgumentException(LocalizedFormats.NOT_POSITIVE_SAMPLE_SIZE, sampleSize);
247            }
248            int[] out = new int[sampleSize];
249            for (int i = 0; i < sampleSize; i++) {
250                out[i] = sample();
251            }
252            return out;
253        }
254    
255        /**
256         * Computes the cumulative probability function and checks for NaN values returned.
257         * Throws MathException if the value is NaN. Rethrows any MathException encountered
258         * evaluating the cumulative probability function. Throws
259         * MathException if the cumulative probability function returns NaN.
260         *
261         * @param argument input value
262         * @return cumulative probability
263         * @throws MathException if the cumulative probability is NaN
264         */
265        private double checkedCumulativeProbability(int argument) throws MathException {
266            double result = Double.NaN;
267                result = cumulativeProbability(argument);
268            if (Double.isNaN(result)) {
269                throw new MathException(LocalizedFormats.DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument);
270            }
271            return result;
272        }
273    
274        /**
275         * Access the domain value lower bound, based on <code>p</code>, used to
276         * bracket a PDF root.  This method is used by
277         * {@link #inverseCumulativeProbability(double)} to find critical values.
278         *
279         * @param p the desired probability for the critical value
280         * @return domain value lower bound, i.e.
281         *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
282         */
283        protected abstract int getDomainLowerBound(double p);
284    
285        /**
286         * Access the domain value upper bound, based on <code>p</code>, used to
287         * bracket a PDF root.  This method is used by
288         * {@link #inverseCumulativeProbability(double)} to find critical values.
289         *
290         * @param p the desired probability for the critical value
291         * @return domain value upper bound, i.e.
292         *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
293         */
294        protected abstract int getDomainUpperBound(double p);
295    
296        /**
297         * Use this method to get information about whether the lower bound
298         * of the support is inclusive or not. For discrete support,
299         * only true here is meaningful.
300         *
301         * @return true (always but at Integer.MIN_VALUE because of the nature of discrete support)
302         * @since 2.2
303         */
304        public boolean isSupportLowerBoundInclusive() {
305            return true;
306        }
307    
308        /**
309         * Use this method to get information about whether the upper bound
310         * of the support is inclusive or not. For discrete support,
311         * only true here is meaningful.
312         *
313         * @return true (always but at Integer.MAX_VALUE because of the nature of discrete support)
314         * @since 2.2
315         */
316        public boolean isSupportUpperBoundInclusive() {
317            return true;
318        }
319    }