001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math.ode;
019    
020    import java.util.ArrayList;
021    import java.util.List;
022    import java.io.Serializable;
023    
024    import org.apache.commons.math.MathRuntimeException;
025    import org.apache.commons.math.ode.DerivativeException;
026    import org.apache.commons.math.exception.util.LocalizedFormats;
027    import org.apache.commons.math.ode.sampling.StepHandler;
028    import org.apache.commons.math.ode.sampling.StepInterpolator;
029    import org.apache.commons.math.util.FastMath;
030    
031    /**
032     * This class stores all information provided by an ODE integrator
033     * during the integration process and build a continuous model of the
034     * solution from this.
035     *
036     * <p>This class act as a step handler from the integrator point of
037     * view. It is called iteratively during the integration process and
038     * stores a copy of all steps information in a sorted collection for
039     * later use. Once the integration process is over, the user can use
040     * the {@link #setInterpolatedTime setInterpolatedTime} and {@link
041     * #getInterpolatedState getInterpolatedState} to retrieve this
042     * information at any time. It is important to wait for the
043     * integration to be over before attempting to call {@link
044     * #setInterpolatedTime setInterpolatedTime} because some internal
045     * variables are set only once the last step has been handled.</p>
046     *
047     * <p>This is useful for example if the main loop of the user
048     * application should remain independent from the integration process
049     * or if one needs to mimic the behaviour of an analytical model
050     * despite a numerical model is used (i.e. one needs the ability to
051     * get the model value at any time or to navigate through the
052     * data).</p>
053     *
054     * <p>If problem modeling is done with several separate
055     * integration phases for contiguous intervals, the same
056     * ContinuousOutputModel can be used as step handler for all
057     * integration phases as long as they are performed in order and in
058     * the same direction. As an example, one can extrapolate the
059     * trajectory of a satellite with one model (i.e. one set of
060     * differential equations) up to the beginning of a maneuver, use
061     * another more complex model including thrusters modeling and
062     * accurate attitude control during the maneuver, and revert to the
063     * first model after the end of the maneuver. If the same continuous
064     * output model handles the steps of all integration phases, the user
065     * do not need to bother when the maneuver begins or ends, he has all
066     * the data available in a transparent manner.</p>
067     *
068     * <p>An important feature of this class is that it implements the
069     * <code>Serializable</code> interface. This means that the result of
070     * an integration can be serialized and reused later (if stored into a
071     * persistent medium like a filesystem or a database) or elsewhere (if
072     * sent to another application). Only the result of the integration is
073     * stored, there is no reference to the integrated problem by
074     * itself.</p>
075     *
076     * <p>One should be aware that the amount of data stored in a
077     * ContinuousOutputModel instance can be important if the state vector
078     * is large, if the integration interval is long or if the steps are
079     * small (which can result from small tolerance settings in {@link
080     * org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator adaptive
081     * step size integrators}).</p>
082     *
083     * @see StepHandler
084     * @see StepInterpolator
085     * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 f??vr. 2011) $
086     * @since 1.2
087     */
088    
089    public class ContinuousOutputModel
090      implements StepHandler, Serializable {
091    
092        /** Serializable version identifier */
093        private static final long serialVersionUID = -1417964919405031606L;
094    
095        /** Initial integration time. */
096        private double initialTime;
097    
098        /** Final integration time. */
099        private double finalTime;
100    
101        /** Integration direction indicator. */
102        private boolean forward;
103    
104        /** Current interpolator index. */
105        private int index;
106    
107        /** Steps table. */
108        private List<StepInterpolator> steps;
109    
110      /** Simple constructor.
111       * Build an empty continuous output model.
112       */
113      public ContinuousOutputModel() {
114        steps = new ArrayList<StepInterpolator>();
115        reset();
116      }
117    
118      /** Append another model at the end of the instance.
119       * @param model model to add at the end of the instance
120       * @exception DerivativeException if user code called from step interpolator
121       * finalization triggers one
122       * @exception IllegalArgumentException if the model to append is not
123       * compatible with the instance (dimension of the state vector,
124       * propagation direction, hole between the dates)
125       */
126      public void append(final ContinuousOutputModel model)
127        throws DerivativeException {
128    
129        if (model.steps.size() == 0) {
130          return;
131        }
132    
133        if (steps.size() == 0) {
134          initialTime = model.initialTime;
135          forward     = model.forward;
136        } else {
137    
138          if (getInterpolatedState().length != model.getInterpolatedState().length) {
139              throw MathRuntimeException.createIllegalArgumentException(
140                    LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE,
141                    getInterpolatedState().length, model.getInterpolatedState().length);
142          }
143    
144          if (forward ^ model.forward) {
145              throw MathRuntimeException.createIllegalArgumentException(
146                    LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
147          }
148    
149          final StepInterpolator lastInterpolator = steps.get(index);
150          final double current  = lastInterpolator.getCurrentTime();
151          final double previous = lastInterpolator.getPreviousTime();
152          final double step = current - previous;
153          final double gap = model.getInitialTime() - current;
154          if (FastMath.abs(gap) > 1.0e-3 * FastMath.abs(step)) {
155            throw MathRuntimeException.createIllegalArgumentException(
156                  LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES, FastMath.abs(gap));
157          }
158    
159        }
160    
161        for (StepInterpolator interpolator : model.steps) {
162          steps.add(interpolator.copy());
163        }
164    
165        index = steps.size() - 1;
166        finalTime = (steps.get(index)).getCurrentTime();
167    
168      }
169    
170      /** Determines whether this handler needs dense output.
171       * <p>The essence of this class is to provide dense output over all
172       * steps, hence it requires the internal steps to provide themselves
173       * dense output. The method therefore returns always true.</p>
174       * @return always true
175       */
176      public boolean requiresDenseOutput() {
177        return true;
178      }
179    
180      /** Reset the step handler.
181       * Initialize the internal data as required before the first step is
182       * handled.
183       */
184      public void reset() {
185        initialTime = Double.NaN;
186        finalTime   = Double.NaN;
187        forward     = true;
188        index       = 0;
189        steps.clear();
190       }
191    
192      /** Handle the last accepted step.
193       * A copy of the information provided by the last step is stored in
194       * the instance for later use.
195       * @param interpolator interpolator for the last accepted step.
196       * @param isLast true if the step is the last one
197       * @exception DerivativeException if user code called from step interpolator
198       * finalization triggers one
199       */
200      public void handleStep(final StepInterpolator interpolator, final boolean isLast)
201        throws DerivativeException {
202    
203        if (steps.size() == 0) {
204          initialTime = interpolator.getPreviousTime();
205          forward     = interpolator.isForward();
206        }
207    
208        steps.add(interpolator.copy());
209    
210        if (isLast) {
211          finalTime = interpolator.getCurrentTime();
212          index     = steps.size() - 1;
213        }
214    
215      }
216    
217      /**
218       * Get the initial integration time.
219       * @return initial integration time
220       */
221      public double getInitialTime() {
222        return initialTime;
223      }
224    
225      /**
226       * Get the final integration time.
227       * @return final integration time
228       */
229      public double getFinalTime() {
230        return finalTime;
231      }
232    
233      /**
234       * Get the time of the interpolated point.
235       * If {@link #setInterpolatedTime} has not been called, it returns
236       * the final integration time.
237       * @return interpolation point time
238       */
239      public double getInterpolatedTime() {
240        return steps.get(index).getInterpolatedTime();
241      }
242    
243      /** Set the time of the interpolated point.
244       * <p>This method should <strong>not</strong> be called before the
245       * integration is over because some internal variables are set only
246       * once the last step has been handled.</p>
247       * <p>Setting the time outside of the integration interval is now
248       * allowed (it was not allowed up to version 5.9 of Mantissa), but
249       * should be used with care since the accuracy of the interpolator
250       * will probably be very poor far from this interval. This allowance
251       * has been added to simplify implementation of search algorithms
252       * near the interval endpoints.</p>
253       * @param time time of the interpolated point
254       */
255      public void setInterpolatedTime(final double time) {
256    
257          // initialize the search with the complete steps table
258          int iMin = 0;
259          final StepInterpolator sMin = steps.get(iMin);
260          double tMin = 0.5 * (sMin.getPreviousTime() + sMin.getCurrentTime());
261    
262          int iMax = steps.size() - 1;
263          final StepInterpolator sMax = steps.get(iMax);
264          double tMax = 0.5 * (sMax.getPreviousTime() + sMax.getCurrentTime());
265    
266          // handle points outside of the integration interval
267          // or in the first and last step
268          if (locatePoint(time, sMin) <= 0) {
269            index = iMin;
270            sMin.setInterpolatedTime(time);
271            return;
272          }
273          if (locatePoint(time, sMax) >= 0) {
274            index = iMax;
275            sMax.setInterpolatedTime(time);
276            return;
277          }
278    
279          // reduction of the table slice size
280          while (iMax - iMin > 5) {
281    
282            // use the last estimated index as the splitting index
283            final StepInterpolator si = steps.get(index);
284            final int location = locatePoint(time, si);
285            if (location < 0) {
286              iMax = index;
287              tMax = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
288            } else if (location > 0) {
289              iMin = index;
290              tMin = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
291            } else {
292              // we have found the target step, no need to continue searching
293              si.setInterpolatedTime(time);
294              return;
295            }
296    
297            // compute a new estimate of the index in the reduced table slice
298            final int iMed = (iMin + iMax) / 2;
299            final StepInterpolator sMed = steps.get(iMed);
300            final double tMed = 0.5 * (sMed.getPreviousTime() + sMed.getCurrentTime());
301    
302            if ((FastMath.abs(tMed - tMin) < 1e-6) || (FastMath.abs(tMax - tMed) < 1e-6)) {
303              // too close to the bounds, we estimate using a simple dichotomy
304              index = iMed;
305            } else {
306              // estimate the index using a reverse quadratic polynom
307              // (reverse means we have i = P(t), thus allowing to simply
308              // compute index = P(time) rather than solving a quadratic equation)
309              final double d12 = tMax - tMed;
310              final double d23 = tMed - tMin;
311              final double d13 = tMax - tMin;
312              final double dt1 = time - tMax;
313              final double dt2 = time - tMed;
314              final double dt3 = time - tMin;
315              final double iLagrange = ((dt2 * dt3 * d23) * iMax -
316                                        (dt1 * dt3 * d13) * iMed +
317                                        (dt1 * dt2 * d12) * iMin) /
318                                       (d12 * d23 * d13);
319              index = (int) FastMath.rint(iLagrange);
320            }
321    
322            // force the next size reduction to be at least one tenth
323            final int low  = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
324            final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
325            if (index < low) {
326              index = low;
327            } else if (index > high) {
328              index = high;
329            }
330    
331          }
332    
333          // now the table slice is very small, we perform an iterative search
334          index = iMin;
335          while ((index <= iMax) && (locatePoint(time, steps.get(index)) > 0)) {
336            ++index;
337          }
338    
339          steps.get(index).setInterpolatedTime(time);
340    
341      }
342    
343      /**
344       * Get the state vector of the interpolated point.
345       * @return state vector at time {@link #getInterpolatedTime}
346       * @exception DerivativeException if user code called from step interpolator
347       * finalization triggers one
348       */
349      public double[] getInterpolatedState() throws DerivativeException {
350        return steps.get(index).getInterpolatedState();
351      }
352    
353      /** Compare a step interval and a double.
354       * @param time point to locate
355       * @param interval step interval
356       * @return -1 if the double is before the interval, 0 if it is in
357       * the interval, and +1 if it is after the interval, according to
358       * the interval direction
359       */
360      private int locatePoint(final double time, final StepInterpolator interval) {
361        if (forward) {
362          if (time < interval.getPreviousTime()) {
363            return -1;
364          } else if (time > interval.getCurrentTime()) {
365            return +1;
366          } else {
367            return 0;
368          }
369        }
370        if (time > interval.getPreviousTime()) {
371          return -1;
372        } else if (time < interval.getCurrentTime()) {
373          return +1;
374        } else {
375          return 0;
376        }
377      }
378    
379    }