001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math.optimization; 019 020 import java.util.Arrays; 021 import java.util.Comparator; 022 023 import org.apache.commons.math.FunctionEvaluationException; 024 import org.apache.commons.math.MathRuntimeException; 025 import org.apache.commons.math.analysis.DifferentiableMultivariateRealFunction; 026 import org.apache.commons.math.exception.util.LocalizedFormats; 027 import org.apache.commons.math.random.RandomVectorGenerator; 028 029 /** 030 * Special implementation of the {@link DifferentiableMultivariateRealOptimizer} interface adding 031 * multi-start features to an existing optimizer. 032 * <p> 033 * This class wraps a classical optimizer to use it several times in 034 * turn with different starting points in order to avoid being trapped 035 * into a local extremum when looking for a global one. 036 * </p> 037 * @version $Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 f??vr. 2011) $ 038 * @since 2.0 039 */ 040 public class MultiStartDifferentiableMultivariateRealOptimizer 041 implements DifferentiableMultivariateRealOptimizer { 042 043 /** Underlying classical optimizer. */ 044 private final DifferentiableMultivariateRealOptimizer optimizer; 045 046 /** Maximal number of iterations allowed. */ 047 private int maxIterations; 048 049 /** Number of iterations already performed for all starts. */ 050 private int totalIterations; 051 052 /** Maximal number of evaluations allowed. */ 053 private int maxEvaluations; 054 055 /** Number of evaluations already performed for all starts. */ 056 private int totalEvaluations; 057 058 /** Number of gradient evaluations already performed for all starts. */ 059 private int totalGradientEvaluations; 060 061 /** Number of starts to go. */ 062 private int starts; 063 064 /** Random generator for multi-start. */ 065 private RandomVectorGenerator generator; 066 067 /** Found optima. */ 068 private RealPointValuePair[] optima; 069 070 /** 071 * Create a multi-start optimizer from a single-start optimizer 072 * @param optimizer single-start optimizer to wrap 073 * @param starts number of starts to perform (including the 074 * first one), multi-start is disabled if value is less than or 075 * equal to 1 076 * @param generator random vector generator to use for restarts 077 */ 078 public MultiStartDifferentiableMultivariateRealOptimizer(final DifferentiableMultivariateRealOptimizer optimizer, 079 final int starts, 080 final RandomVectorGenerator generator) { 081 this.optimizer = optimizer; 082 this.totalIterations = 0; 083 this.totalEvaluations = 0; 084 this.totalGradientEvaluations = 0; 085 this.starts = starts; 086 this.generator = generator; 087 this.optima = null; 088 setMaxIterations(Integer.MAX_VALUE); 089 setMaxEvaluations(Integer.MAX_VALUE); 090 } 091 092 /** Get all the optima found during the last call to {@link 093 * #optimize(DifferentiableMultivariateRealFunction, GoalType, double[]) 094 * optimize}. 095 * <p>The optimizer stores all the optima found during a set of 096 * restarts. The {@link #optimize(DifferentiableMultivariateRealFunction, 097 * GoalType, double[]) optimize} method returns the best point only. This 098 * method returns all the points found at the end of each starts, 099 * including the best one already returned by the {@link 100 * #optimize(DifferentiableMultivariateRealFunction, GoalType, double[]) 101 * optimize} method. 102 * </p> 103 * <p> 104 * The returned array as one element for each start as specified 105 * in the constructor. It is ordered with the results from the 106 * runs that did converge first, sorted from best to worst 107 * objective value (i.e in ascending order if minimizing and in 108 * descending order if maximizing), followed by and null elements 109 * corresponding to the runs that did not converge. This means all 110 * elements will be null if the {@link #optimize(DifferentiableMultivariateRealFunction, 111 * GoalType, double[]) optimize} method did throw a {@link 112 * org.apache.commons.math.ConvergenceException ConvergenceException}). 113 * This also means that if the first element is non null, it is the best 114 * point found across all starts.</p> 115 * @return array containing the optima 116 * @exception IllegalStateException if {@link #optimize(DifferentiableMultivariateRealFunction, 117 * GoalType, double[]) optimize} has not been called 118 */ 119 public RealPointValuePair[] getOptima() throws IllegalStateException { 120 if (optima == null) { 121 throw MathRuntimeException.createIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); 122 } 123 return optima.clone(); 124 } 125 126 /** {@inheritDoc} */ 127 public void setMaxIterations(int maxIterations) { 128 this.maxIterations = maxIterations; 129 } 130 131 /** {@inheritDoc} */ 132 public int getMaxIterations() { 133 return maxIterations; 134 } 135 136 /** {@inheritDoc} */ 137 public int getIterations() { 138 return totalIterations; 139 } 140 141 /** {@inheritDoc} */ 142 public void setMaxEvaluations(int maxEvaluations) { 143 this.maxEvaluations = maxEvaluations; 144 } 145 146 /** {@inheritDoc} */ 147 public int getMaxEvaluations() { 148 return maxEvaluations; 149 } 150 151 /** {@inheritDoc} */ 152 public int getEvaluations() { 153 return totalEvaluations; 154 } 155 156 /** {@inheritDoc} */ 157 public int getGradientEvaluations() { 158 return totalGradientEvaluations; 159 } 160 161 /** {@inheritDoc} */ 162 public void setConvergenceChecker(RealConvergenceChecker checker) { 163 optimizer.setConvergenceChecker(checker); 164 } 165 166 /** {@inheritDoc} */ 167 public RealConvergenceChecker getConvergenceChecker() { 168 return optimizer.getConvergenceChecker(); 169 } 170 171 /** {@inheritDoc} */ 172 public RealPointValuePair optimize(final DifferentiableMultivariateRealFunction f, 173 final GoalType goalType, 174 double[] startPoint) 175 throws FunctionEvaluationException, OptimizationException, FunctionEvaluationException { 176 177 optima = new RealPointValuePair[starts]; 178 totalIterations = 0; 179 totalEvaluations = 0; 180 totalGradientEvaluations = 0; 181 182 // multi-start loop 183 for (int i = 0; i < starts; ++i) { 184 185 try { 186 optimizer.setMaxIterations(maxIterations - totalIterations); 187 optimizer.setMaxEvaluations(maxEvaluations - totalEvaluations); 188 optima[i] = optimizer.optimize(f, goalType, 189 (i == 0) ? startPoint : generator.nextVector()); 190 } catch (FunctionEvaluationException fee) { 191 optima[i] = null; 192 } catch (OptimizationException oe) { 193 optima[i] = null; 194 } 195 196 totalIterations += optimizer.getIterations(); 197 totalEvaluations += optimizer.getEvaluations(); 198 totalGradientEvaluations += optimizer.getGradientEvaluations(); 199 200 } 201 202 // sort the optima from best to worst, followed by null elements 203 Arrays.sort(optima, new Comparator<RealPointValuePair>() { 204 public int compare(final RealPointValuePair o1, final RealPointValuePair o2) { 205 if (o1 == null) { 206 return (o2 == null) ? 0 : +1; 207 } else if (o2 == null) { 208 return -1; 209 } 210 final double v1 = o1.getValue(); 211 final double v2 = o2.getValue(); 212 return (goalType == GoalType.MINIMIZE) ? 213 Double.compare(v1, v2) : Double.compare(v2, v1); 214 } 215 }); 216 217 if (optima[0] == null) { 218 throw new OptimizationException( 219 LocalizedFormats.NO_CONVERGENCE_WITH_ANY_START_POINT, 220 starts); 221 } 222 223 // return the found point given the best objective function value 224 return optima[0]; 225 226 } 227 228 }