001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math.optimization.fitting; 019 020 import java.io.Serializable; 021 022 import org.apache.commons.math.analysis.UnivariateRealFunction; 023 import org.apache.commons.math.exception.DimensionMismatchException; 024 import org.apache.commons.math.exception.util.LocalizedFormats; 025 import org.apache.commons.math.exception.ZeroException; 026 import org.apache.commons.math.exception.NullArgumentException; 027 028 /** 029 * The derivative of {@link GaussianFunction}. Specifically: 030 * <p> 031 * <tt>f'(x) = (-b / (d^2)) * (x - c) * exp(-((x - c)^2) / (2*(d^2)))</tt> 032 * <p> 033 * Notation key: 034 * <ul> 035 * <li><tt>x^n</tt>: <tt>x</tt> raised to the power of <tt>n</tt> 036 * <li><tt>exp(x)</tt>: <i>e</i><tt>^x</tt> 037 * </ul> 038 * 039 * @since 2.2 040 * @version $Revision: 1037327 $ $Date: 2010-11-20 21:57:37 +0100 (sam. 20 nov. 2010) $ 041 */ 042 public class GaussianDerivativeFunction implements UnivariateRealFunction, Serializable { 043 044 /** Serializable version identifier. */ 045 private static final long serialVersionUID = -6500229089670174766L; 046 047 /** Parameter b of this function. */ 048 private final double b; 049 050 /** Parameter c of this function. */ 051 private final double c; 052 053 /** Square of the parameter d of this function. */ 054 private final double d2; 055 056 /** 057 * Constructs an instance with the specified parameters. 058 * 059 * @param b <tt>b</tt> parameter value 060 * @param c <tt>c</tt> parameter value 061 * @param d <tt>d</tt> parameter value 062 * 063 * @throws IllegalArgumentException if <code>d</code> is 0 064 */ 065 public GaussianDerivativeFunction(double b, double c, double d) { 066 if (d == 0.0) { 067 throw new ZeroException(); 068 } 069 this.b = b; 070 this.c = c; 071 this.d2 = d * d; 072 } 073 074 /** 075 * Constructs an instance with the specified parameters. 076 * 077 * @param parameters <tt>b</tt>, <tt>c</tt>, and <tt>d</tt> parameter values 078 * 079 * @throws IllegalArgumentException if <code>parameters</code> is null, 080 * <code>parameters</code> length is not 3, or if 081 * <code>parameters[2]</code> is 0 082 */ 083 public GaussianDerivativeFunction(double[] parameters) { 084 if (parameters == null) { 085 throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); 086 } 087 if (parameters.length != 3) { 088 throw new DimensionMismatchException(3, parameters.length); 089 } 090 if (parameters[2] == 0.0) { 091 throw new ZeroException(); 092 } 093 this.b = parameters[0]; 094 this.c = parameters[1]; 095 this.d2 = parameters[2] * parameters[2]; 096 } 097 098 /** {@inheritDoc} */ 099 public double value(double x) { 100 final double xMc = x - c; 101 return (-b / d2) * xMc * Math.exp(-(xMc * xMc) / (2.0 * d2)); 102 } 103 104 }