001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math.optimization.fitting;
019    
020    import java.io.Serializable;
021    
022    import org.apache.commons.math.analysis.UnivariateRealFunction;
023    import org.apache.commons.math.exception.DimensionMismatchException;
024    import org.apache.commons.math.exception.util.LocalizedFormats;
025    import org.apache.commons.math.exception.ZeroException;
026    import org.apache.commons.math.exception.NullArgumentException;
027    
028    /**
029     * The derivative of {@link GaussianFunction}.  Specifically:
030     * <p>
031     * <tt>f'(x) = (-b / (d^2)) * (x - c) * exp(-((x - c)^2) / (2*(d^2)))</tt>
032     * <p>
033     * Notation key:
034     * <ul>
035     * <li><tt>x^n</tt>: <tt>x</tt> raised to the power of <tt>n</tt>
036     * <li><tt>exp(x)</tt>: <i>e</i><tt>^x</tt>
037     * </ul>
038     *
039     * @since 2.2
040     * @version $Revision: 1037327 $ $Date: 2010-11-20 21:57:37 +0100 (sam. 20 nov. 2010) $
041     */
042    public class GaussianDerivativeFunction implements UnivariateRealFunction, Serializable {
043    
044        /** Serializable version identifier. */
045        private static final long serialVersionUID = -6500229089670174766L;
046    
047        /** Parameter b of this function. */
048        private final double b;
049    
050        /** Parameter c of this function. */
051        private final double c;
052    
053        /** Square of the parameter d of this function. */
054        private final double d2;
055    
056        /**
057         * Constructs an instance with the specified parameters.
058         *
059         * @param b <tt>b</tt> parameter value
060         * @param c <tt>c</tt> parameter value
061         * @param d <tt>d</tt> parameter value
062         *
063         * @throws IllegalArgumentException if <code>d</code> is 0
064         */
065        public GaussianDerivativeFunction(double b, double c, double d) {
066            if (d == 0.0) {
067                throw new ZeroException();
068            }
069            this.b = b;
070            this.c = c;
071            this.d2 = d * d;
072        }
073    
074        /**
075         * Constructs an instance with the specified parameters.
076         *
077         * @param parameters <tt>b</tt>, <tt>c</tt>, and <tt>d</tt> parameter values
078         *
079         * @throws IllegalArgumentException if <code>parameters</code> is null,
080         *         <code>parameters</code> length is not 3, or if
081         *         <code>parameters[2]</code> is 0
082         */
083        public GaussianDerivativeFunction(double[] parameters) {
084            if (parameters == null) {
085                throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
086            }
087            if (parameters.length != 3) {
088                throw new DimensionMismatchException(3, parameters.length);
089            }
090            if (parameters[2] == 0.0) {
091                throw new ZeroException();
092            }
093            this.b = parameters[0];
094            this.c = parameters[1];
095            this.d2 = parameters[2] * parameters[2];
096        }
097    
098        /** {@inheritDoc} */
099        public double value(double x) {
100            final double xMc = x - c;
101            return (-b / d2) * xMc * Math.exp(-(xMc * xMc) / (2.0 * d2));
102        }
103    
104    }