001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math3.optimization;
019    
020    import java.util.Arrays;
021    import java.util.Comparator;
022    
023    import org.apache.commons.math3.analysis.MultivariateVectorFunction;
024    import org.apache.commons.math3.exception.ConvergenceException;
025    import org.apache.commons.math3.exception.MathIllegalStateException;
026    import org.apache.commons.math3.exception.NotStrictlyPositiveException;
027    import org.apache.commons.math3.exception.NullArgumentException;
028    import org.apache.commons.math3.exception.util.LocalizedFormats;
029    import org.apache.commons.math3.random.RandomVectorGenerator;
030    
031    /**
032     * Base class for all implementations of a multi-start optimizer.
033     *
034     * This interface is mainly intended to enforce the internal coherence of
035     * Commons-Math. Users of the API are advised to base their code on
036     * {@link DifferentiableMultivariateVectorMultiStartOptimizer}.
037     *
038     * @param <FUNC> Type of the objective function to be optimized.
039     *
040     * @version $Id: BaseMultivariateVectorMultiStartOptimizer.java 1422230 2012-12-15 12:11:13Z erans $
041     * @deprecated As of 3.1 (to be removed in 4.0).
042     * @since 3.0
043     */
044    @Deprecated
045    public class BaseMultivariateVectorMultiStartOptimizer<FUNC extends MultivariateVectorFunction>
046        implements BaseMultivariateVectorOptimizer<FUNC> {
047        /** Underlying classical optimizer. */
048        private final BaseMultivariateVectorOptimizer<FUNC> optimizer;
049        /** Maximal number of evaluations allowed. */
050        private int maxEvaluations;
051        /** Number of evaluations already performed for all starts. */
052        private int totalEvaluations;
053        /** Number of starts to go. */
054        private int starts;
055        /** Random generator for multi-start. */
056        private RandomVectorGenerator generator;
057        /** Found optima. */
058        private PointVectorValuePair[] optima;
059    
060        /**
061         * Create a multi-start optimizer from a single-start optimizer.
062         *
063         * @param optimizer Single-start optimizer to wrap.
064         * @param starts Number of starts to perform. If {@code starts == 1},
065         * the {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
066         * optimize} will return the same solution as {@code optimizer} would.
067         * @param generator Random vector generator to use for restarts.
068         * @throws NullArgumentException if {@code optimizer} or {@code generator}
069         * is {@code null}.
070         * @throws NotStrictlyPositiveException if {@code starts < 1}.
071         */
072        protected BaseMultivariateVectorMultiStartOptimizer(final BaseMultivariateVectorOptimizer<FUNC> optimizer,
073                                                               final int starts,
074                                                               final RandomVectorGenerator generator) {
075            if (optimizer == null ||
076                generator == null) {
077                throw new NullArgumentException();
078            }
079            if (starts < 1) {
080                throw new NotStrictlyPositiveException(starts);
081            }
082    
083            this.optimizer = optimizer;
084            this.starts = starts;
085            this.generator = generator;
086        }
087    
088        /**
089         * Get all the optima found during the last call to {@link
090         * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize}.
091         * The optimizer stores all the optima found during a set of
092         * restarts. The {@link #optimize(int,MultivariateVectorFunction,double[],double[],double[])
093         * optimize} method returns the best point only. This method
094         * returns all the points found at the end of each starts, including
095         * the best one already returned by the {@link
096         * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method.
097         * <br/>
098         * The returned array as one element for each start as specified
099         * in the constructor. It is ordered with the results from the
100         * runs that did converge first, sorted from best to worst
101         * objective value (i.e. in ascending order if minimizing and in
102         * descending order if maximizing), followed by and null elements
103         * corresponding to the runs that did not converge. This means all
104         * elements will be null if the {@link
105         * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} method did
106         * throw a {@link ConvergenceException}). This also means that if
107         * the first element is not {@code null}, it is the best point found
108         * across all starts.
109         *
110         * @return array containing the optima
111         * @throws MathIllegalStateException if {@link
112         * #optimize(int,MultivariateVectorFunction,double[],double[],double[]) optimize} has not been
113         * called.
114         */
115        public PointVectorValuePair[] getOptima() {
116            if (optima == null) {
117                throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
118            }
119            return optima.clone();
120        }
121    
122        /** {@inheritDoc} */
123        public int getMaxEvaluations() {
124            return maxEvaluations;
125        }
126    
127        /** {@inheritDoc} */
128        public int getEvaluations() {
129            return totalEvaluations;
130        }
131    
132        /** {@inheritDoc} */
133        public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
134            return optimizer.getConvergenceChecker();
135        }
136    
137        /**
138         * {@inheritDoc}
139         */
140        public PointVectorValuePair optimize(int maxEval, final FUNC f,
141                                                double[] target, double[] weights,
142                                                double[] startPoint) {
143            maxEvaluations = maxEval;
144            RuntimeException lastException = null;
145            optima = new PointVectorValuePair[starts];
146            totalEvaluations = 0;
147    
148            // Multi-start loop.
149            for (int i = 0; i < starts; ++i) {
150    
151                // CHECKSTYLE: stop IllegalCatch
152                try {
153                    optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, target, weights,
154                                                   i == 0 ? startPoint : generator.nextVector());
155                } catch (ConvergenceException oe) {
156                    optima[i] = null;
157                } catch (RuntimeException mue) {
158                    lastException = mue;
159                    optima[i] = null;
160                }
161                // CHECKSTYLE: resume IllegalCatch
162    
163                totalEvaluations += optimizer.getEvaluations();
164            }
165    
166            sortPairs(target, weights);
167    
168            if (optima[0] == null) {
169                throw lastException; // cannot be null if starts >=1
170            }
171    
172            // Return the found point given the best objective function value.
173            return optima[0];
174        }
175    
176        /**
177         * Sort the optima from best to worst, followed by {@code null} elements.
178         *
179         * @param target Target value for the objective functions at optimum.
180         * @param weights Weights for the least-squares cost computation.
181         */
182        private void sortPairs(final double[] target,
183                               final double[] weights) {
184            Arrays.sort(optima, new Comparator<PointVectorValuePair>() {
185                    public int compare(final PointVectorValuePair o1,
186                                       final PointVectorValuePair o2) {
187                        if (o1 == null) {
188                            return (o2 == null) ? 0 : 1;
189                        } else if (o2 == null) {
190                            return -1;
191                        }
192                        return Double.compare(weightedResidual(o1), weightedResidual(o2));
193                    }
194                    private double weightedResidual(final PointVectorValuePair pv) {
195                        final double[] value = pv.getValueRef();
196                        double sum = 0;
197                        for (int i = 0; i < value.length; ++i) {
198                            final double ri = value[i] - target[i];
199                            sum += weights[i] * ri * ri;
200                        }
201                        return sum;
202                    }
203                });
204        }
205    }