001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.optimization.direct; 019 020 import org.apache.commons.math3.analysis.MultivariateFunction; 021 import org.apache.commons.math3.analysis.UnivariateFunction; 022 import org.apache.commons.math3.analysis.function.Logit; 023 import org.apache.commons.math3.analysis.function.Sigmoid; 024 import org.apache.commons.math3.exception.DimensionMismatchException; 025 import org.apache.commons.math3.exception.NumberIsTooSmallException; 026 import org.apache.commons.math3.util.FastMath; 027 import org.apache.commons.math3.util.MathUtils; 028 029 /** 030 * <p>Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.</p> 031 * 032 * <p> 033 * This adapter can be used to wrap functions subject to simple bounds on 034 * parameters so they can be used by optimizers that do <em>not</em> directly 035 * support simple bounds. 036 * </p> 037 * <p> 038 * The principle is that the user function that will be wrapped will see its 039 * parameters bounded as required, i.e when its {@code value} method is called 040 * with argument array {@code point}, the elements array will fulfill requirement 041 * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components 042 * may be unbounded or bounded only on one side if the corresponding bound is 043 * set to an infinite value. The optimizer will not manage the user function by 044 * itself, but it will handle this adapter and it is this adapter that will take 045 * care the bounds are fulfilled. The adapter {@link #value(double[])} method will 046 * be called by the optimizer with unbound parameters, and the adapter will map 047 * the unbounded value to the bounded range using appropriate functions like 048 * {@link Sigmoid} for double bounded elements for example. 049 * </p> 050 * <p> 051 * As the optimizer sees only unbounded parameters, it should be noted that the 052 * start point or simplex expected by the optimizer should be unbounded, so the 053 * user is responsible for converting his bounded point to unbounded by calling 054 * {@link #boundedToUnbounded(double[])} before providing them to the optimizer. 055 * For the same reason, the point returned by the {@link 056 * org.apache.commons.math3.optimization.BaseMultivariateOptimizer#optimize(int, 057 * MultivariateFunction, org.apache.commons.math3.optimization.GoalType, double[])} 058 * method is unbounded. So to convert this point to bounded, users must call 059 * {@link #unboundedToBounded(double[])} by themselves!</p> 060 * <p> 061 * This adapter is only a poor man solution to simple bounds optimization constraints 062 * that can be used with simple optimizers like {@link SimplexOptimizer} with {@link 063 * NelderMeadSimplex} or {@link MultiDirectionalSimplex}. A better solution is to use 064 * an optimizer that directly supports simple bounds like {@link CMAESOptimizer} or 065 * {@link BOBYQAOptimizer}. One caveat of this poor man solution is that behavior near 066 * the bounds may be numerically unstable as bounds are mapped from infinite values. 067 * Another caveat is that convergence values are evaluated by the optimizer with respect 068 * to unbounded variables, so there will be scales differences when converted to bounded 069 * variables. 070 * </p> 071 * 072 * @see MultivariateFunctionPenaltyAdapter 073 * 074 * @version $Id: MultivariateFunctionMappingAdapter.java 1422230 2012-12-15 12:11:13Z erans $ 075 * @deprecated As of 3.1 (to be removed in 4.0). 076 * @since 3.0 077 */ 078 079 @Deprecated 080 public class MultivariateFunctionMappingAdapter implements MultivariateFunction { 081 082 /** Underlying bounded function. */ 083 private final MultivariateFunction bounded; 084 085 /** Mapping functions. */ 086 private final Mapper[] mappers; 087 088 /** Simple constructor. 089 * @param bounded bounded function 090 * @param lower lower bounds for each element of the input parameters array 091 * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for 092 * unbounded values) 093 * @param upper upper bounds for each element of the input parameters array 094 * (some elements may be set to {@code Double.POSITIVE_INFINITY} for 095 * unbounded values) 096 * @exception DimensionMismatchException if lower and upper bounds are not 097 * consistent, either according to dimension or to values 098 */ 099 public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded, 100 final double[] lower, final double[] upper) { 101 102 // safety checks 103 MathUtils.checkNotNull(lower); 104 MathUtils.checkNotNull(upper); 105 if (lower.length != upper.length) { 106 throw new DimensionMismatchException(lower.length, upper.length); 107 } 108 for (int i = 0; i < lower.length; ++i) { 109 // note the following test is written in such a way it also fails for NaN 110 if (!(upper[i] >= lower[i])) { 111 throw new NumberIsTooSmallException(upper[i], lower[i], true); 112 } 113 } 114 115 this.bounded = bounded; 116 this.mappers = new Mapper[lower.length]; 117 for (int i = 0; i < mappers.length; ++i) { 118 if (Double.isInfinite(lower[i])) { 119 if (Double.isInfinite(upper[i])) { 120 // element is unbounded, no transformation is needed 121 mappers[i] = new NoBoundsMapper(); 122 } else { 123 // element is simple-bounded on the upper side 124 mappers[i] = new UpperBoundMapper(upper[i]); 125 } 126 } else { 127 if (Double.isInfinite(upper[i])) { 128 // element is simple-bounded on the lower side 129 mappers[i] = new LowerBoundMapper(lower[i]); 130 } else { 131 // element is double-bounded 132 mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]); 133 } 134 } 135 } 136 137 } 138 139 /** Map an array from unbounded to bounded. 140 * @param point unbounded value 141 * @return bounded value 142 */ 143 public double[] unboundedToBounded(double[] point) { 144 145 // map unbounded input point to bounded point 146 final double[] mapped = new double[mappers.length]; 147 for (int i = 0; i < mappers.length; ++i) { 148 mapped[i] = mappers[i].unboundedToBounded(point[i]); 149 } 150 151 return mapped; 152 153 } 154 155 /** Map an array from bounded to unbounded. 156 * @param point bounded value 157 * @return unbounded value 158 */ 159 public double[] boundedToUnbounded(double[] point) { 160 161 // map bounded input point to unbounded point 162 final double[] mapped = new double[mappers.length]; 163 for (int i = 0; i < mappers.length; ++i) { 164 mapped[i] = mappers[i].boundedToUnbounded(point[i]); 165 } 166 167 return mapped; 168 169 } 170 171 /** Compute the underlying function value from an unbounded point. 172 * <p> 173 * This method simply bounds the unbounded point using the mappings 174 * set up at construction and calls the underlying function using 175 * the bounded point. 176 * </p> 177 * @param point unbounded value 178 * @return underlying function value 179 * @see #unboundedToBounded(double[]) 180 */ 181 public double value(double[] point) { 182 return bounded.value(unboundedToBounded(point)); 183 } 184 185 /** Mapping interface. */ 186 private interface Mapper { 187 188 /** Map a value from unbounded to bounded. 189 * @param y unbounded value 190 * @return bounded value 191 */ 192 double unboundedToBounded(double y); 193 194 /** Map a value from bounded to unbounded. 195 * @param x bounded value 196 * @return unbounded value 197 */ 198 double boundedToUnbounded(double x); 199 200 } 201 202 /** Local class for no bounds mapping. */ 203 private static class NoBoundsMapper implements Mapper { 204 205 /** Simple constructor. 206 */ 207 public NoBoundsMapper() { 208 } 209 210 /** {@inheritDoc} */ 211 public double unboundedToBounded(final double y) { 212 return y; 213 } 214 215 /** {@inheritDoc} */ 216 public double boundedToUnbounded(final double x) { 217 return x; 218 } 219 220 } 221 222 /** Local class for lower bounds mapping. */ 223 private static class LowerBoundMapper implements Mapper { 224 225 /** Low bound. */ 226 private final double lower; 227 228 /** Simple constructor. 229 * @param lower lower bound 230 */ 231 public LowerBoundMapper(final double lower) { 232 this.lower = lower; 233 } 234 235 /** {@inheritDoc} */ 236 public double unboundedToBounded(final double y) { 237 return lower + FastMath.exp(y); 238 } 239 240 /** {@inheritDoc} */ 241 public double boundedToUnbounded(final double x) { 242 return FastMath.log(x - lower); 243 } 244 245 } 246 247 /** Local class for upper bounds mapping. */ 248 private static class UpperBoundMapper implements Mapper { 249 250 /** Upper bound. */ 251 private final double upper; 252 253 /** Simple constructor. 254 * @param upper upper bound 255 */ 256 public UpperBoundMapper(final double upper) { 257 this.upper = upper; 258 } 259 260 /** {@inheritDoc} */ 261 public double unboundedToBounded(final double y) { 262 return upper - FastMath.exp(-y); 263 } 264 265 /** {@inheritDoc} */ 266 public double boundedToUnbounded(final double x) { 267 return -FastMath.log(upper - x); 268 } 269 270 } 271 272 /** Local class for lower and bounds mapping. */ 273 private static class LowerUpperBoundMapper implements Mapper { 274 275 /** Function from unbounded to bounded. */ 276 private final UnivariateFunction boundingFunction; 277 278 /** Function from bounded to unbounded. */ 279 private final UnivariateFunction unboundingFunction; 280 281 /** Simple constructor. 282 * @param lower lower bound 283 * @param upper upper bound 284 */ 285 public LowerUpperBoundMapper(final double lower, final double upper) { 286 boundingFunction = new Sigmoid(lower, upper); 287 unboundingFunction = new Logit(lower, upper); 288 } 289 290 /** {@inheritDoc} */ 291 public double unboundedToBounded(final double y) { 292 return boundingFunction.value(y); 293 } 294 295 /** {@inheritDoc} */ 296 public double boundedToUnbounded(final double x) { 297 return unboundingFunction.value(x); 298 } 299 300 } 301 302 }