001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math3.analysis.function;
019    
020    import java.util.Arrays;
021    
022    import org.apache.commons.math3.analysis.FunctionUtils;
023    import org.apache.commons.math3.analysis.UnivariateFunction;
024    import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
025    import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
026    import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
027    import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
028    import org.apache.commons.math3.exception.NullArgumentException;
029    import org.apache.commons.math3.exception.DimensionMismatchException;
030    import org.apache.commons.math3.util.FastMath;
031    
032    /**
033     * <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
034     *  Sigmoid</a> function.
035     * It is the inverse of the {@link Logit logit} function.
036     * A more flexible version, the generalised logistic, is implemented
037     * by the {@link Logistic} class.
038     *
039     * @since 3.0
040     * @version $Id: Sigmoid.java 1391927 2012-09-30 00:03:30Z erans $
041     */
042    public class Sigmoid implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {
043        /** Lower asymptote. */
044        private final double lo;
045        /** Higher asymptote. */
046        private final double hi;
047    
048        /**
049         * Usual sigmoid function, where the lower asymptote is 0 and the higher
050         * asymptote is 1.
051         */
052        public Sigmoid() {
053            this(0, 1);
054        }
055    
056        /**
057         * Sigmoid function.
058         *
059         * @param lo Lower asymptote.
060         * @param hi Higher asymptote.
061         */
062        public Sigmoid(double lo,
063                       double hi) {
064            this.lo = lo;
065            this.hi = hi;
066        }
067    
068        /** {@inheritDoc}
069         * @deprecated as of 3.1, replaced by {@link #value(DerivativeStructure)}
070         */
071        @Deprecated
072        public UnivariateFunction derivative() {
073            return FunctionUtils.toDifferentiableUnivariateFunction(this).derivative();
074        }
075    
076        /** {@inheritDoc} */
077        public double value(double x) {
078            return value(x, lo, hi);
079        }
080    
081        /**
082         * Parametric function where the input array contains the parameters of
083         * the logit function, ordered as follows:
084         * <ul>
085         *  <li>Lower asymptote</li>
086         *  <li>Higher asymptote</li>
087         * </ul>
088         */
089        public static class Parametric implements ParametricUnivariateFunction {
090            /**
091             * Computes the value of the sigmoid at {@code x}.
092             *
093             * @param x Value for which the function must be computed.
094             * @param param Values of lower asymptote and higher asymptote.
095             * @return the value of the function.
096             * @throws NullArgumentException if {@code param} is {@code null}.
097             * @throws DimensionMismatchException if the size of {@code param} is
098             * not 2.
099             */
100            public double value(double x, double ... param)
101                throws NullArgumentException,
102                       DimensionMismatchException {
103                validateParameters(param);
104                return Sigmoid.value(x, param[0], param[1]);
105            }
106    
107            /**
108             * Computes the value of the gradient at {@code x}.
109             * The components of the gradient vector are the partial
110             * derivatives of the function with respect to each of the
111             * <em>parameters</em> (lower asymptote and higher asymptote).
112             *
113             * @param x Value at which the gradient must be computed.
114             * @param param Values for lower asymptote and higher asymptote.
115             * @return the gradient vector at {@code x}.
116             * @throws NullArgumentException if {@code param} is {@code null}.
117             * @throws DimensionMismatchException if the size of {@code param} is
118             * not 2.
119             */
120            public double[] gradient(double x, double ... param)
121                throws NullArgumentException,
122                       DimensionMismatchException {
123                validateParameters(param);
124    
125                final double invExp1 = 1 / (1 + FastMath.exp(-x));
126    
127                return new double[] { 1 - invExp1, invExp1 };
128            }
129    
130            /**
131             * Validates parameters to ensure they are appropriate for the evaluation of
132             * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
133             * methods.
134             *
135             * @param param Values for lower and higher asymptotes.
136             * @throws NullArgumentException if {@code param} is {@code null}.
137             * @throws DimensionMismatchException if the size of {@code param} is
138             * not 2.
139             */
140            private void validateParameters(double[] param)
141                throws NullArgumentException,
142                       DimensionMismatchException {
143                if (param == null) {
144                    throw new NullArgumentException();
145                }
146                if (param.length != 2) {
147                    throw new DimensionMismatchException(param.length, 2);
148                }
149            }
150        }
151    
152        /**
153         * @param x Value at which to compute the sigmoid.
154         * @param lo Lower asymptote.
155         * @param hi Higher asymptote.
156         * @return the value of the sigmoid function at {@code x}.
157         */
158        private static double value(double x,
159                                    double lo,
160                                    double hi) {
161            return lo + (hi - lo) / (1 + FastMath.exp(-x));
162        }
163    
164        /** {@inheritDoc}
165         * @since 3.1
166         */
167        public DerivativeStructure value(final DerivativeStructure t) {
168    
169            double[] f = new double[t.getOrder() + 1];
170            final double exp = FastMath.exp(-t.getValue());
171            if (Double.isInfinite(exp)) {
172    
173                // special handling near lower boundary, to avoid NaN
174                f[0] = lo;
175                Arrays.fill(f, 1, f.length, 0.0);
176    
177            } else {
178    
179                // the nth order derivative of sigmoid has the form:
180                // dn(sigmoid(x)/dxn = P_n(exp(-x)) / (1+exp(-x))^(n+1)
181                // where P_n(t) is a degree n polynomial with normalized higher term
182                // P_0(t) = 1, P_1(t) = t, P_2(t) = t^2 - t, P_3(t) = t^3 - 4 t^2 + t...
183                // the general recurrence relation for P_n is:
184                // P_n(x) = n t P_(n-1)(t) - t (1 + t) P_(n-1)'(t)
185                final double[] p = new double[f.length];
186    
187                final double inv   = 1 / (1 + exp);
188                double coeff = hi - lo;
189                for (int n = 0; n < f.length; ++n) {
190    
191                    // update and evaluate polynomial P_n(t)
192                    double v = 0;
193                    p[n] = 1;
194                    for (int k = n; k >= 0; --k) {
195                        v = v * exp + p[k];
196                        if (k > 1) {
197                            p[k - 1] = (n - k + 2) * p[k - 2] - (k - 1) * p[k - 1];
198                        } else {
199                            p[0] = 0;
200                        }
201                    }
202    
203                    coeff *= inv;
204                    f[n]   = coeff * v;
205    
206                }
207    
208                // fix function value
209                f[0] += lo;
210    
211            }
212    
213            return t.compose(f);
214    
215        }
216    
217    }