001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.optim.linear; 018 019 import java.io.IOException; 020 import java.io.ObjectInputStream; 021 import java.io.ObjectOutputStream; 022 import java.io.Serializable; 023 import org.apache.commons.math3.analysis.MultivariateFunction; 024 import org.apache.commons.math3.linear.MatrixUtils; 025 import org.apache.commons.math3.linear.RealVector; 026 import org.apache.commons.math3.linear.ArrayRealVector; 027 import org.apache.commons.math3.optim.OptimizationData; 028 029 /** 030 * An objective function for a linear optimization problem. 031 * <p> 032 * A linear objective function has one the form: 033 * <pre> 034 * c<sub>1</sub>x<sub>1</sub> + ... c<sub>n</sub>x<sub>n</sub> + d 035 * </pre> 036 * The c<sub>i</sub> and d are the coefficients of the equation, 037 * the x<sub>i</sub> are the coordinates of the current point. 038 * </p> 039 * 040 * @version $Id: LinearObjectiveFunction.java 1416643 2012-12-03 19:37:14Z tn $ 041 * @since 2.0 042 */ 043 public class LinearObjectiveFunction 044 implements MultivariateFunction, 045 OptimizationData, 046 Serializable { 047 /** Serializable version identifier. */ 048 private static final long serialVersionUID = -4531815507568396090L; 049 /** Coefficients of the linear equation (c<sub>i</sub>). */ 050 private final transient RealVector coefficients; 051 /** Constant term of the linear equation. */ 052 private final double constantTerm; 053 054 /** 055 * @param coefficients Coefficients for the linear equation being optimized. 056 * @param constantTerm Constant term of the linear equation. 057 */ 058 public LinearObjectiveFunction(double[] coefficients, double constantTerm) { 059 this(new ArrayRealVector(coefficients), constantTerm); 060 } 061 062 /** 063 * @param coefficients Coefficients for the linear equation being optimized. 064 * @param constantTerm Constant term of the linear equation. 065 */ 066 public LinearObjectiveFunction(RealVector coefficients, double constantTerm) { 067 this.coefficients = coefficients; 068 this.constantTerm = constantTerm; 069 } 070 071 /** 072 * Gets the coefficients of the linear equation being optimized. 073 * 074 * @return coefficients of the linear equation being optimized. 075 */ 076 public RealVector getCoefficients() { 077 return coefficients; 078 } 079 080 /** 081 * Gets the constant of the linear equation being optimized. 082 * 083 * @return constant of the linear equation being optimized. 084 */ 085 public double getConstantTerm() { 086 return constantTerm; 087 } 088 089 /** 090 * Computes the value of the linear equation at the current point. 091 * 092 * @param point Point at which linear equation must be evaluated. 093 * @return the value of the linear equation at the current point. 094 */ 095 public double value(final double[] point) { 096 return value(new ArrayRealVector(point, false)); 097 } 098 099 /** 100 * Computes the value of the linear equation at the current point. 101 * 102 * @param point Point at which linear equation must be evaluated. 103 * @return the value of the linear equation at the current point. 104 */ 105 public double value(final RealVector point) { 106 return coefficients.dotProduct(point) + constantTerm; 107 } 108 109 @Override 110 public boolean equals(Object other) { 111 if (this == other) { 112 return true; 113 } 114 if (other instanceof LinearObjectiveFunction) { 115 LinearObjectiveFunction rhs = (LinearObjectiveFunction) other; 116 return (constantTerm == rhs.constantTerm) && coefficients.equals(rhs.coefficients); 117 } 118 119 return false; 120 } 121 122 @Override 123 public int hashCode() { 124 return Double.valueOf(constantTerm).hashCode() ^ coefficients.hashCode(); 125 } 126 127 /** 128 * Serialize the instance. 129 * @param oos stream where object should be written 130 * @throws IOException if object cannot be written to stream 131 */ 132 private void writeObject(ObjectOutputStream oos) 133 throws IOException { 134 oos.defaultWriteObject(); 135 MatrixUtils.serializeRealVector(coefficients, oos); 136 } 137 138 /** 139 * Deserialize the instance. 140 * @param ois stream from which the object should be read 141 * @throws ClassNotFoundException if a class in the stream cannot be found 142 * @throws IOException if object cannot be read from the stream 143 */ 144 private void readObject(ObjectInputStream ois) 145 throws ClassNotFoundException, IOException { 146 ois.defaultReadObject(); 147 MatrixUtils.deserializeRealVector(this, "coefficients", ois); 148 } 149 }