001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math3.optimization;
019    
020    import java.util.Arrays;
021    import java.util.Comparator;
022    
023    import org.apache.commons.math3.analysis.MultivariateFunction;
024    import org.apache.commons.math3.exception.MathIllegalStateException;
025    import org.apache.commons.math3.exception.NotStrictlyPositiveException;
026    import org.apache.commons.math3.exception.NullArgumentException;
027    import org.apache.commons.math3.exception.util.LocalizedFormats;
028    import org.apache.commons.math3.random.RandomVectorGenerator;
029    
030    /**
031     * Base class for all implementations of a multi-start optimizer.
032     *
033     * This interface is mainly intended to enforce the internal coherence of
034     * Commons-Math. Users of the API are advised to base their code on
035     * {@link MultivariateMultiStartOptimizer} or on
036     * {@link DifferentiableMultivariateMultiStartOptimizer}.
037     *
038     * @param <FUNC> Type of the objective function to be optimized.
039     *
040     * @version $Id: BaseMultivariateMultiStartOptimizer.java 1422230 2012-12-15 12:11:13Z erans $
041     * @deprecated As of 3.1 (to be removed in 4.0).
042     * @since 3.0
043     */
044    @Deprecated
045    public class BaseMultivariateMultiStartOptimizer<FUNC extends MultivariateFunction>
046        implements BaseMultivariateOptimizer<FUNC> {
047        /** Underlying classical optimizer. */
048        private final BaseMultivariateOptimizer<FUNC> optimizer;
049        /** Maximal number of evaluations allowed. */
050        private int maxEvaluations;
051        /** Number of evaluations already performed for all starts. */
052        private int totalEvaluations;
053        /** Number of starts to go. */
054        private int starts;
055        /** Random generator for multi-start. */
056        private RandomVectorGenerator generator;
057        /** Found optima. */
058        private PointValuePair[] optima;
059    
060        /**
061         * Create a multi-start optimizer from a single-start optimizer.
062         *
063         * @param optimizer Single-start optimizer to wrap.
064         * @param starts Number of starts to perform. If {@code starts == 1},
065         * the {@link #optimize(int,MultivariateFunction,GoalType,double[])
066         * optimize} will return the same solution as {@code optimizer} would.
067         * @param generator Random vector generator to use for restarts.
068         * @throws NullArgumentException if {@code optimizer} or {@code generator}
069         * is {@code null}.
070         * @throws NotStrictlyPositiveException if {@code starts < 1}.
071         */
072        protected BaseMultivariateMultiStartOptimizer(final BaseMultivariateOptimizer<FUNC> optimizer,
073                                                          final int starts,
074                                                          final RandomVectorGenerator generator) {
075            if (optimizer == null ||
076                generator == null) {
077                throw new NullArgumentException();
078            }
079            if (starts < 1) {
080                throw new NotStrictlyPositiveException(starts);
081            }
082    
083            this.optimizer = optimizer;
084            this.starts = starts;
085            this.generator = generator;
086        }
087    
088        /**
089         * Get all the optima found during the last call to {@link
090         * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}.
091         * The optimizer stores all the optima found during a set of
092         * restarts. The {@link #optimize(int,MultivariateFunction,GoalType,double[])
093         * optimize} method returns the best point only. This method
094         * returns all the points found at the end of each starts,
095         * including the best one already returned by the {@link
096         * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} method.
097         * <br/>
098         * The returned array as one element for each start as specified
099         * in the constructor. It is ordered with the results from the
100         * runs that did converge first, sorted from best to worst
101         * objective value (i.e in ascending order if minimizing and in
102         * descending order if maximizing), followed by and null elements
103         * corresponding to the runs that did not converge. This means all
104         * elements will be null if the {@link #optimize(int,MultivariateFunction,GoalType,double[])
105         * optimize} method did throw an exception.
106         * This also means that if the first element is not {@code null}, it
107         * is the best point found across all starts.
108         *
109         * @return an array containing the optima.
110         * @throws MathIllegalStateException if {@link
111         * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}
112         * has not been called.
113         */
114        public PointValuePair[] getOptima() {
115            if (optima == null) {
116                throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET);
117            }
118            return optima.clone();
119        }
120    
121        /** {@inheritDoc} */
122        public int getMaxEvaluations() {
123            return maxEvaluations;
124        }
125    
126        /** {@inheritDoc} */
127        public int getEvaluations() {
128            return totalEvaluations;
129        }
130    
131        /** {@inheritDoc} */
132        public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
133            return optimizer.getConvergenceChecker();
134        }
135    
136        /**
137         * {@inheritDoc}
138         */
139        public PointValuePair optimize(int maxEval, final FUNC f,
140                                           final GoalType goal,
141                                           double[] startPoint) {
142            maxEvaluations = maxEval;
143            RuntimeException lastException = null;
144            optima = new PointValuePair[starts];
145            totalEvaluations = 0;
146    
147            // Multi-start loop.
148            for (int i = 0; i < starts; ++i) {
149                // CHECKSTYLE: stop IllegalCatch
150                try {
151                    optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, goal,
152                                                   i == 0 ? startPoint : generator.nextVector());
153                } catch (RuntimeException mue) {
154                    lastException = mue;
155                    optima[i] = null;
156                }
157                // CHECKSTYLE: resume IllegalCatch
158    
159                totalEvaluations += optimizer.getEvaluations();
160            }
161    
162            sortPairs(goal);
163    
164            if (optima[0] == null) {
165                throw lastException; // cannot be null if starts >=1
166            }
167    
168            // Return the found point given the best objective function value.
169            return optima[0];
170        }
171    
172        /**
173         * Sort the optima from best to worst, followed by {@code null} elements.
174         *
175         * @param goal Goal type.
176         */
177        private void sortPairs(final GoalType goal) {
178            Arrays.sort(optima, new Comparator<PointValuePair>() {
179                    public int compare(final PointValuePair o1,
180                                       final PointValuePair o2) {
181                        if (o1 == null) {
182                            return (o2 == null) ? 0 : 1;
183                        } else if (o2 == null) {
184                            return -1;
185                        }
186                        final double v1 = o1.getValue();
187                        final double v2 = o2.getValue();
188                        return (goal == GoalType.MINIMIZE) ?
189                            Double.compare(v1, v2) : Double.compare(v2, v1);
190                    }
191                });
192        }
193    }