001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.optimization; 019 020 import java.util.Arrays; 021 import java.util.Comparator; 022 023 import org.apache.commons.math3.analysis.MultivariateFunction; 024 import org.apache.commons.math3.exception.MathIllegalStateException; 025 import org.apache.commons.math3.exception.NotStrictlyPositiveException; 026 import org.apache.commons.math3.exception.NullArgumentException; 027 import org.apache.commons.math3.exception.util.LocalizedFormats; 028 import org.apache.commons.math3.random.RandomVectorGenerator; 029 030 /** 031 * Base class for all implementations of a multi-start optimizer. 032 * 033 * This interface is mainly intended to enforce the internal coherence of 034 * Commons-Math. Users of the API are advised to base their code on 035 * {@link MultivariateMultiStartOptimizer} or on 036 * {@link DifferentiableMultivariateMultiStartOptimizer}. 037 * 038 * @param <FUNC> Type of the objective function to be optimized. 039 * 040 * @version $Id: BaseMultivariateMultiStartOptimizer.java 1422230 2012-12-15 12:11:13Z erans $ 041 * @deprecated As of 3.1 (to be removed in 4.0). 042 * @since 3.0 043 */ 044 @Deprecated 045 public class BaseMultivariateMultiStartOptimizer<FUNC extends MultivariateFunction> 046 implements BaseMultivariateOptimizer<FUNC> { 047 /** Underlying classical optimizer. */ 048 private final BaseMultivariateOptimizer<FUNC> optimizer; 049 /** Maximal number of evaluations allowed. */ 050 private int maxEvaluations; 051 /** Number of evaluations already performed for all starts. */ 052 private int totalEvaluations; 053 /** Number of starts to go. */ 054 private int starts; 055 /** Random generator for multi-start. */ 056 private RandomVectorGenerator generator; 057 /** Found optima. */ 058 private PointValuePair[] optima; 059 060 /** 061 * Create a multi-start optimizer from a single-start optimizer. 062 * 063 * @param optimizer Single-start optimizer to wrap. 064 * @param starts Number of starts to perform. If {@code starts == 1}, 065 * the {@link #optimize(int,MultivariateFunction,GoalType,double[]) 066 * optimize} will return the same solution as {@code optimizer} would. 067 * @param generator Random vector generator to use for restarts. 068 * @throws NullArgumentException if {@code optimizer} or {@code generator} 069 * is {@code null}. 070 * @throws NotStrictlyPositiveException if {@code starts < 1}. 071 */ 072 protected BaseMultivariateMultiStartOptimizer(final BaseMultivariateOptimizer<FUNC> optimizer, 073 final int starts, 074 final RandomVectorGenerator generator) { 075 if (optimizer == null || 076 generator == null) { 077 throw new NullArgumentException(); 078 } 079 if (starts < 1) { 080 throw new NotStrictlyPositiveException(starts); 081 } 082 083 this.optimizer = optimizer; 084 this.starts = starts; 085 this.generator = generator; 086 } 087 088 /** 089 * Get all the optima found during the last call to {@link 090 * #optimize(int,MultivariateFunction,GoalType,double[]) optimize}. 091 * The optimizer stores all the optima found during a set of 092 * restarts. The {@link #optimize(int,MultivariateFunction,GoalType,double[]) 093 * optimize} method returns the best point only. This method 094 * returns all the points found at the end of each starts, 095 * including the best one already returned by the {@link 096 * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} method. 097 * <br/> 098 * The returned array as one element for each start as specified 099 * in the constructor. It is ordered with the results from the 100 * runs that did converge first, sorted from best to worst 101 * objective value (i.e in ascending order if minimizing and in 102 * descending order if maximizing), followed by and null elements 103 * corresponding to the runs that did not converge. This means all 104 * elements will be null if the {@link #optimize(int,MultivariateFunction,GoalType,double[]) 105 * optimize} method did throw an exception. 106 * This also means that if the first element is not {@code null}, it 107 * is the best point found across all starts. 108 * 109 * @return an array containing the optima. 110 * @throws MathIllegalStateException if {@link 111 * #optimize(int,MultivariateFunction,GoalType,double[]) optimize} 112 * has not been called. 113 */ 114 public PointValuePair[] getOptima() { 115 if (optima == null) { 116 throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); 117 } 118 return optima.clone(); 119 } 120 121 /** {@inheritDoc} */ 122 public int getMaxEvaluations() { 123 return maxEvaluations; 124 } 125 126 /** {@inheritDoc} */ 127 public int getEvaluations() { 128 return totalEvaluations; 129 } 130 131 /** {@inheritDoc} */ 132 public ConvergenceChecker<PointValuePair> getConvergenceChecker() { 133 return optimizer.getConvergenceChecker(); 134 } 135 136 /** 137 * {@inheritDoc} 138 */ 139 public PointValuePair optimize(int maxEval, final FUNC f, 140 final GoalType goal, 141 double[] startPoint) { 142 maxEvaluations = maxEval; 143 RuntimeException lastException = null; 144 optima = new PointValuePair[starts]; 145 totalEvaluations = 0; 146 147 // Multi-start loop. 148 for (int i = 0; i < starts; ++i) { 149 // CHECKSTYLE: stop IllegalCatch 150 try { 151 optima[i] = optimizer.optimize(maxEval - totalEvaluations, f, goal, 152 i == 0 ? startPoint : generator.nextVector()); 153 } catch (RuntimeException mue) { 154 lastException = mue; 155 optima[i] = null; 156 } 157 // CHECKSTYLE: resume IllegalCatch 158 159 totalEvaluations += optimizer.getEvaluations(); 160 } 161 162 sortPairs(goal); 163 164 if (optima[0] == null) { 165 throw lastException; // cannot be null if starts >=1 166 } 167 168 // Return the found point given the best objective function value. 169 return optima[0]; 170 } 171 172 /** 173 * Sort the optima from best to worst, followed by {@code null} elements. 174 * 175 * @param goal Goal type. 176 */ 177 private void sortPairs(final GoalType goal) { 178 Arrays.sort(optima, new Comparator<PointValuePair>() { 179 public int compare(final PointValuePair o1, 180 final PointValuePair o2) { 181 if (o1 == null) { 182 return (o2 == null) ? 0 : 1; 183 } else if (o2 == null) { 184 return -1; 185 } 186 final double v1 = o1.getValue(); 187 final double v2 = o2.getValue(); 188 return (goal == GoalType.MINIMIZE) ? 189 Double.compare(v1, v2) : Double.compare(v2, v1); 190 } 191 }); 192 } 193 }