001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.optimization.direct; 019 020 import org.apache.commons.math3.analysis.MultivariateFunction; 021 import org.apache.commons.math3.exception.DimensionMismatchException; 022 import org.apache.commons.math3.exception.NumberIsTooSmallException; 023 import org.apache.commons.math3.util.FastMath; 024 import org.apache.commons.math3.util.MathUtils; 025 026 /** 027 * <p>Adapter extending bounded {@link MultivariateFunction} to an unbouded 028 * domain using a penalty function.</p> 029 * 030 * <p> 031 * This adapter can be used to wrap functions subject to simple bounds on 032 * parameters so they can be used by optimizers that do <em>not</em> directly 033 * support simple bounds. 034 * </p> 035 * <p> 036 * The principle is that the user function that will be wrapped will see its 037 * parameters bounded as required, i.e when its {@code value} method is called 038 * with argument array {@code point}, the elements array will fulfill requirement 039 * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components 040 * may be unbounded or bounded only on one side if the corresponding bound is 041 * set to an infinite value. The optimizer will not manage the user function by 042 * itself, but it will handle this adapter and it is this adapter that will take 043 * care the bounds are fulfilled. The adapter {@link #value(double[])} method will 044 * be called by the optimizer with unbound parameters, and the adapter will check 045 * if the parameters is within range or not. If it is in range, then the underlying 046 * user function will be called, and if it is not the value of a penalty function 047 * will be returned instead. 048 * </p> 049 * <p> 050 * This adapter is only a poor man solution to simple bounds optimization constraints 051 * that can be used with simple optimizers like {@link SimplexOptimizer} with {@link 052 * NelderMeadSimplex} or {@link MultiDirectionalSimplex}. A better solution is to use 053 * an optimizer that directly supports simple bounds like {@link CMAESOptimizer} or 054 * {@link BOBYQAOptimizer}. One caveat of this poor man solution is that if start point 055 * or start simplex is completely outside of the allowed range, only the penalty function 056 * is used, and the optimizer may converge without ever entering the range. 057 * </p> 058 * 059 * @see MultivariateFunctionMappingAdapter 060 * 061 * @version $Id: MultivariateFunctionPenaltyAdapter.java 1422230 2012-12-15 12:11:13Z erans $ 062 * @deprecated As of 3.1 (to be removed in 4.0). 063 * @since 3.0 064 */ 065 066 @Deprecated 067 public class MultivariateFunctionPenaltyAdapter implements MultivariateFunction { 068 069 /** Underlying bounded function. */ 070 private final MultivariateFunction bounded; 071 072 /** Lower bounds. */ 073 private final double[] lower; 074 075 /** Upper bounds. */ 076 private final double[] upper; 077 078 /** Penalty offset. */ 079 private final double offset; 080 081 /** Penalty scales. */ 082 private final double[] scale; 083 084 /** Simple constructor. 085 * <p> 086 * When the optimizer provided points are out of range, the value of the 087 * penalty function will be used instead of the value of the underlying 088 * function. In order for this penalty to be effective in rejecting this 089 * point during the optimization process, the penalty function value should 090 * be defined with care. This value is computed as: 091 * <pre> 092 * penalty(point) = offset + ∑<sub>i</sub>[scale[i] * √|point[i]-boundary[i]|] 093 * </pre> 094 * where indices i correspond to all the components that violates their boundaries. 095 * </p> 096 * <p> 097 * So when attempting a function minimization, offset should be larger than 098 * the maximum expected value of the underlying function and scale components 099 * should all be positive. When attempting a function maximization, offset 100 * should be lesser than the minimum expected value of the underlying function 101 * and scale components should all be negative. 102 * minimization, and lesser than the minimum expected value of the underlying 103 * function when attempting maximization. 104 * </p> 105 * <p> 106 * These choices for the penalty function have two properties. First, all out 107 * of range points will return a function value that is worse than the value 108 * returned by any in range point. Second, the penalty is worse for large 109 * boundaries violation than for small violations, so the optimizer has an hint 110 * about the direction in which it should search for acceptable points. 111 * </p> 112 * @param bounded bounded function 113 * @param lower lower bounds for each element of the input parameters array 114 * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for 115 * unbounded values) 116 * @param upper upper bounds for each element of the input parameters array 117 * (some elements may be set to {@code Double.POSITIVE_INFINITY} for 118 * unbounded values) 119 * @param offset base offset of the penalty function 120 * @param scale scale of the penalty function 121 * @exception DimensionMismatchException if lower bounds, upper bounds and 122 * scales are not consistent, either according to dimension or to bounadary 123 * values 124 */ 125 public MultivariateFunctionPenaltyAdapter(final MultivariateFunction bounded, 126 final double[] lower, final double[] upper, 127 final double offset, final double[] scale) { 128 129 // safety checks 130 MathUtils.checkNotNull(lower); 131 MathUtils.checkNotNull(upper); 132 MathUtils.checkNotNull(scale); 133 if (lower.length != upper.length) { 134 throw new DimensionMismatchException(lower.length, upper.length); 135 } 136 if (lower.length != scale.length) { 137 throw new DimensionMismatchException(lower.length, scale.length); 138 } 139 for (int i = 0; i < lower.length; ++i) { 140 // note the following test is written in such a way it also fails for NaN 141 if (!(upper[i] >= lower[i])) { 142 throw new NumberIsTooSmallException(upper[i], lower[i], true); 143 } 144 } 145 146 this.bounded = bounded; 147 this.lower = lower.clone(); 148 this.upper = upper.clone(); 149 this.offset = offset; 150 this.scale = scale.clone(); 151 152 } 153 154 /** Compute the underlying function value from an unbounded point. 155 * <p> 156 * This method simply returns the value of the underlying function 157 * if the unbounded point already fulfills the bounds, and compute 158 * a replacement value using the offset and scale if bounds are 159 * violated, without calling the function at all. 160 * </p> 161 * @param point unbounded point 162 * @return either underlying function value or penalty function value 163 */ 164 public double value(double[] point) { 165 166 for (int i = 0; i < scale.length; ++i) { 167 if ((point[i] < lower[i]) || (point[i] > upper[i])) { 168 // bound violation starting at this component 169 double sum = 0; 170 for (int j = i; j < scale.length; ++j) { 171 final double overshoot; 172 if (point[j] < lower[j]) { 173 overshoot = scale[j] * (lower[j] - point[j]); 174 } else if (point[j] > upper[j]) { 175 overshoot = scale[j] * (point[j] - upper[j]); 176 } else { 177 overshoot = 0; 178 } 179 sum += FastMath.sqrt(overshoot); 180 } 181 return offset + sum; 182 } 183 } 184 185 // all boundaries are fulfilled, we are in the expected 186 // domain of the underlying function 187 return bounded.value(point); 188 189 } 190 191 }