001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    
018    package org.apache.commons.math3.optimization.general;
019    
020    import org.apache.commons.math3.analysis.MultivariateVectorFunction;
021    import org.apache.commons.math3.analysis.differentiation.GradientFunction;
022    import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
023    import org.apache.commons.math3.optimization.ConvergenceChecker;
024    import org.apache.commons.math3.optimization.GoalType;
025    import org.apache.commons.math3.optimization.OptimizationData;
026    import org.apache.commons.math3.optimization.InitialGuess;
027    import org.apache.commons.math3.optimization.PointValuePair;
028    import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer;
029    
030    /**
031     * Base class for implementing optimizers for multivariate scalar
032     * differentiable functions.
033     * It contains boiler-plate code for dealing with gradient evaluation.
034     *
035     * @version $Id: AbstractDifferentiableOptimizer.java 1422230 2012-12-15 12:11:13Z erans $
036     * @deprecated As of 3.1 (to be removed in 4.0).
037     * @since 3.1
038     */
039    @Deprecated
040    public abstract class AbstractDifferentiableOptimizer
041        extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction> {
042        /**
043         * Objective function gradient.
044         */
045        private MultivariateVectorFunction gradient;
046    
047        /**
048         * @param checker Convergence checker.
049         */
050        protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) {
051            super(checker);
052        }
053    
054        /**
055         * Compute the gradient vector.
056         *
057         * @param evaluationPoint Point at which the gradient must be evaluated.
058         * @return the gradient at the specified point.
059         */
060        protected double[] computeObjectiveGradient(final double[] evaluationPoint) {
061            return gradient.value(evaluationPoint);
062        }
063    
064        /**
065         * {@inheritDoc}
066         *
067         * @deprecated In 3.1. Please use
068         * {@link #optimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])}
069         * instead.
070         */
071        @Override@Deprecated
072        protected PointValuePair optimizeInternal(final int maxEval,
073                                                  final MultivariateDifferentiableFunction f,
074                                                  final GoalType goalType,
075                                                  final double[] startPoint) {
076            return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint));
077        }
078    
079        /** {@inheritDoc} */
080        @Override
081        protected PointValuePair optimizeInternal(final int maxEval,
082                                                  final MultivariateDifferentiableFunction f,
083                                                  final GoalType goalType,
084                                                  final OptimizationData... optData) {
085            // Store optimization problem characteristics.
086            gradient = new GradientFunction(f);
087    
088            // Perform optimization.
089            return super.optimizeInternal(maxEval, f, goalType, optData);
090        }
091    }