001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.optimization.general; 019 020 import org.apache.commons.math3.analysis.MultivariateVectorFunction; 021 import org.apache.commons.math3.analysis.differentiation.GradientFunction; 022 import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction; 023 import org.apache.commons.math3.optimization.ConvergenceChecker; 024 import org.apache.commons.math3.optimization.GoalType; 025 import org.apache.commons.math3.optimization.OptimizationData; 026 import org.apache.commons.math3.optimization.InitialGuess; 027 import org.apache.commons.math3.optimization.PointValuePair; 028 import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer; 029 030 /** 031 * Base class for implementing optimizers for multivariate scalar 032 * differentiable functions. 033 * It contains boiler-plate code for dealing with gradient evaluation. 034 * 035 * @version $Id: AbstractDifferentiableOptimizer.java 1422230 2012-12-15 12:11:13Z erans $ 036 * @deprecated As of 3.1 (to be removed in 4.0). 037 * @since 3.1 038 */ 039 @Deprecated 040 public abstract class AbstractDifferentiableOptimizer 041 extends BaseAbstractMultivariateOptimizer<MultivariateDifferentiableFunction> { 042 /** 043 * Objective function gradient. 044 */ 045 private MultivariateVectorFunction gradient; 046 047 /** 048 * @param checker Convergence checker. 049 */ 050 protected AbstractDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) { 051 super(checker); 052 } 053 054 /** 055 * Compute the gradient vector. 056 * 057 * @param evaluationPoint Point at which the gradient must be evaluated. 058 * @return the gradient at the specified point. 059 */ 060 protected double[] computeObjectiveGradient(final double[] evaluationPoint) { 061 return gradient.value(evaluationPoint); 062 } 063 064 /** 065 * {@inheritDoc} 066 * 067 * @deprecated In 3.1. Please use 068 * {@link #optimizeInternal(int,MultivariateDifferentiableFunction,GoalType,OptimizationData[])} 069 * instead. 070 */ 071 @Override@Deprecated 072 protected PointValuePair optimizeInternal(final int maxEval, 073 final MultivariateDifferentiableFunction f, 074 final GoalType goalType, 075 final double[] startPoint) { 076 return optimizeInternal(maxEval, f, goalType, new InitialGuess(startPoint)); 077 } 078 079 /** {@inheritDoc} */ 080 @Override 081 protected PointValuePair optimizeInternal(final int maxEval, 082 final MultivariateDifferentiableFunction f, 083 final GoalType goalType, 084 final OptimizationData... optData) { 085 // Store optimization problem characteristics. 086 gradient = new GradientFunction(f); 087 088 // Perform optimization. 089 return super.optimizeInternal(maxEval, f, goalType, optData); 090 } 091 }