001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018 package org.apache.commons.math3.optimization.general; 019 020 import org.apache.commons.math3.analysis.DifferentiableMultivariateFunction; 021 import org.apache.commons.math3.analysis.MultivariateVectorFunction; 022 import org.apache.commons.math3.analysis.FunctionUtils; 023 import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction; 024 import org.apache.commons.math3.optimization.DifferentiableMultivariateOptimizer; 025 import org.apache.commons.math3.optimization.GoalType; 026 import org.apache.commons.math3.optimization.ConvergenceChecker; 027 import org.apache.commons.math3.optimization.PointValuePair; 028 import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateOptimizer; 029 030 /** 031 * Base class for implementing optimizers for multivariate scalar 032 * differentiable functions. 033 * It contains boiler-plate code for dealing with gradient evaluation. 034 * 035 * @version $Id: AbstractScalarDifferentiableOptimizer.java 1422230 2012-12-15 12:11:13Z erans $ 036 * @deprecated As of 3.1 (to be removed in 4.0). 037 * @since 2.0 038 */ 039 @Deprecated 040 public abstract class AbstractScalarDifferentiableOptimizer 041 extends BaseAbstractMultivariateOptimizer<DifferentiableMultivariateFunction> 042 implements DifferentiableMultivariateOptimizer { 043 /** 044 * Objective function gradient. 045 */ 046 private MultivariateVectorFunction gradient; 047 048 /** 049 * Simple constructor with default settings. 050 * The convergence check is set to a 051 * {@link org.apache.commons.math3.optimization.SimpleValueChecker 052 * SimpleValueChecker}. 053 * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()} 054 */ 055 @Deprecated 056 protected AbstractScalarDifferentiableOptimizer() {} 057 058 /** 059 * @param checker Convergence checker. 060 */ 061 protected AbstractScalarDifferentiableOptimizer(ConvergenceChecker<PointValuePair> checker) { 062 super(checker); 063 } 064 065 /** 066 * Compute the gradient vector. 067 * 068 * @param evaluationPoint Point at which the gradient must be evaluated. 069 * @return the gradient at the specified point. 070 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException 071 * if the allowed number of evaluations is exceeded. 072 */ 073 protected double[] computeObjectiveGradient(final double[] evaluationPoint) { 074 return gradient.value(evaluationPoint); 075 } 076 077 /** {@inheritDoc} */ 078 @Override 079 protected PointValuePair optimizeInternal(int maxEval, 080 final DifferentiableMultivariateFunction f, 081 final GoalType goalType, 082 final double[] startPoint) { 083 // Store optimization problem characteristics. 084 gradient = f.gradient(); 085 086 return super.optimizeInternal(maxEval, f, goalType, startPoint); 087 } 088 089 /** 090 * Optimize an objective function. 091 * 092 * @param f Objective function. 093 * @param goalType Type of optimization goal: either 094 * {@link GoalType#MAXIMIZE} or {@link GoalType#MINIMIZE}. 095 * @param startPoint Start point for optimization. 096 * @param maxEval Maximum number of function evaluations. 097 * @return the point/value pair giving the optimal value for objective 098 * function. 099 * @throws org.apache.commons.math3.exception.DimensionMismatchException 100 * if the start point dimension is wrong. 101 * @throws org.apache.commons.math3.exception.TooManyEvaluationsException 102 * if the maximal number of evaluations is exceeded. 103 * @throws org.apache.commons.math3.exception.NullArgumentException if 104 * any argument is {@code null}. 105 */ 106 public PointValuePair optimize(final int maxEval, 107 final MultivariateDifferentiableFunction f, 108 final GoalType goalType, 109 final double[] startPoint) { 110 return optimizeInternal(maxEval, 111 FunctionUtils.toDifferentiableMultivariateFunction(f), 112 goalType, 113 startPoint); 114 } 115 }