001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.math3.stat.regression; 018 019 /** 020 * The multiple linear regression can be represented in matrix-notation. 021 * <pre> 022 * y=X*b+u 023 * </pre> 024 * where y is an <code>n-vector</code> <b>regressand</b>, X is a <code>[n,k]</code> matrix whose <code>k</code> columns are called 025 * <b>regressors</b>, b is <code>k-vector</code> of <b>regression parameters</b> and <code>u</code> is an <code>n-vector</code> 026 * of <b>error terms</b> or <b>residuals</b>. 027 * 028 * The notation is quite standard in literature, 029 * cf eg <a href="http://www.econ.queensu.ca/ETM">Davidson and MacKinnon, Econometrics Theory and Methods, 2004</a>. 030 * @version $Id: MultipleLinearRegression.java 1416643 2012-12-03 19:37:14Z tn $ 031 * @since 2.0 032 */ 033 public interface MultipleLinearRegression { 034 035 /** 036 * Estimates the regression parameters b. 037 * 038 * @return The [k,1] array representing b 039 */ 040 double[] estimateRegressionParameters(); 041 042 /** 043 * Estimates the variance of the regression parameters, ie Var(b). 044 * 045 * @return The [k,k] array representing the variance of b 046 */ 047 double[][] estimateRegressionParametersVariance(); 048 049 /** 050 * Estimates the residuals, ie u = y - X*b. 051 * 052 * @return The [n,1] array representing the residuals 053 */ 054 double[] estimateResiduals(); 055 056 /** 057 * Returns the variance of the regressand, ie Var(y). 058 * 059 * @return The double representing the variance of y 060 */ 061 double estimateRegressandVariance(); 062 063 /** 064 * Returns the standard errors of the regression parameters. 065 * 066 * @return standard errors of estimated regression parameters 067 */ 068 double[] estimateRegressionParametersStandardErrors(); 069 070 }