Class

org.bdgenomics.adam.rdd

AvroRecordGroupGenomicRDD

Related Doc: package rdd

Permalink

abstract class AvroRecordGroupGenomicRDD[T, U <: Product, V <: AvroRecordGroupGenomicRDD[T, U, V]] extends AvroGenomicRDD[T, U, V] with GenomicRDDWithLineage[T, V]

An abstract class describing a GenomicRDD where:

* The data are Avro IndexedRecords. * The data are associated to record groups (i.e., they are reads or fragments).

Linear Supertypes
GenomicRDDWithLineage[T, V], AvroGenomicRDD[T, U, V], GenomicDataset[T, U, V], GenomicRDD[T, V], ADAMRDDFunctions[T], Logging, Serializable, Serializable, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. AvroRecordGroupGenomicRDD
  2. GenomicRDDWithLineage
  3. AvroGenomicRDD
  4. GenomicDataset
  5. GenomicRDD
  6. ADAMRDDFunctions
  7. Logging
  8. Serializable
  9. Serializable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new AvroRecordGroupGenomicRDD()(implicit arg0: (T) ⇒ IndexedRecord, arg1: Manifest[T])

    Permalink

Abstract Value Members

  1. abstract def buildTree(rdd: RDD[(ReferenceRegion, T)])(implicit tTag: ClassTag[T]): IntervalArray[ReferenceRegion, T]

    Permalink
    Attributes
    protected
    Definition Classes
    GenomicRDD
  2. abstract val dataset: Dataset[U]

    Permalink

    This data as a Spark SQL Dataset.

    This data as a Spark SQL Dataset.

    Definition Classes
    GenomicDataset
  3. abstract def getReferenceRegions(elem: T): Seq[ReferenceRegion]

    Permalink
    Attributes
    protected
    Definition Classes
    GenomicRDD
  4. abstract val optPartitionMap: Option[Array[Option[(ReferenceRegion, ReferenceRegion)]]]

    Permalink
    Attributes
    protected
    Definition Classes
    GenomicRDD
  5. abstract val processingSteps: Seq[ProcessingStep]

    Permalink

    The processing steps that have been applied to this GenomicRDD.

    The processing steps that have been applied to this GenomicRDD.

    Definition Classes
    GenomicRDDWithLineage
  6. abstract val rdd: RDD[T]

    Permalink

    The RDD of genomic data that we are wrapping.

    The RDD of genomic data that we are wrapping.

    Definition Classes
    GenomicRDD
  7. abstract val recordGroups: RecordGroupDictionary

    Permalink

    A dictionary describing the record groups attached to this GenomicRDD.

  8. abstract def replaceProcessingSteps(newProcessingSteps: Seq[ProcessingStep]): V

    Permalink

    Replaces the processing steps attached to this RDD.

    Replaces the processing steps attached to this RDD.

    newProcessingSteps

    The new processing steps to attach to this RDD.

    returns

    Returns a new GenomicRDD with new processing lineage attached.

    Definition Classes
    GenomicRDDWithLineage
  9. abstract def replaceRdd(newRdd: RDD[T], newPartitionMap: Option[Array[Option[(ReferenceRegion, ReferenceRegion)]]] = None): V

    Permalink
    Attributes
    protected
    Definition Classes
    GenomicRDD
  10. abstract def replaceRecordGroups(newRecordGroups: RecordGroupDictionary): V

    Permalink

    Replaces the record groups attached to this RDD.

    Replaces the record groups attached to this RDD.

    newRecordGroups

    The new record group dictionary to attach.

    returns

    Returns a new GenomicRDD with new record groups attached.

  11. abstract def replaceSequences(newSequences: SequenceDictionary): V

    Permalink

    Replaces the sequence dictionary attached to a GenomicRDD.

    Replaces the sequence dictionary attached to a GenomicRDD.

    newSequences

    The new sequence dictionary to attach.

    returns

    Returns a new GenomicRDD with the sequences replaced.

    Definition Classes
    GenomicRDD
  12. abstract val sequences: SequenceDictionary

    Permalink

    The sequence dictionary describing the reference assembly this dataset is aligned to.

    The sequence dictionary describing the reference assembly this dataset is aligned to.

    Definition Classes
    GenomicRDD
  13. abstract def transformDataset(tFn: (Dataset[U]) ⇒ Dataset[U]): V

    Permalink

    Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    Applies a function that transforms the underlying Dataset into a new Dataset using the Spark SQL API.

    tFn

    A function that transforms the underlying RDD as a Dataset.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  14. abstract val uTag: scala.reflect.api.JavaUniverse.TypeTag[U]

    Permalink
    Definition Classes
    GenomicDataset
  15. abstract def union(rdds: V*): V

    Permalink

    Unions together multiple genomic RDDs.

    Unions together multiple genomic RDDs.

    rdds

    RDDs to union with this RDD.

    Definition Classes
    GenomicRDD

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def addProcessingStep(newProcessingStep: ProcessingStep): V

    Permalink

    Merges a new processing record with the extant computational lineage.

    Merges a new processing record with the extant computational lineage.

    returns

    Returns a new GenomicRDD with new record groups merged in.

    Definition Classes
    GenomicRDDWithLineage
  5. def addRecordGroup(recordGroupToAdd: RecordGroup): V

    Permalink

    Adds a single record group to the extant record groups.

    Adds a single record group to the extant record groups.

    recordGroupToAdd

    The record group to append to the extant record groups.

    returns

    Returns a new GenomicRDD with the new record group added.

  6. def addRecordGroups(recordGroupsToAdd: RecordGroupDictionary): V

    Permalink

    Merges a new set of record groups with the extant record groups.

    Merges a new set of record groups with the extant record groups.

    recordGroupsToAdd

    The record group dictionary to append to the extant record groups.

    returns

    Returns a new GenomicRDD with new record groups merged in.

  7. def addSequence(sequenceToAdd: SequenceRecord): V

    Permalink

    Appends metadata for a single sequence to the current RDD.

    Appends metadata for a single sequence to the current RDD.

    sequenceToAdd

    The sequence to add.

    returns

    Returns a new GenomicRDD with this sequence appended.

    Definition Classes
    GenomicRDD
  8. def addSequences(sequencesToAdd: SequenceDictionary): V

    Permalink

    Appends sequence metadata to the current RDD.

    Appends sequence metadata to the current RDD.

    sequencesToAdd

    The new sequences to append.

    returns

    Returns a new GenomicRDD with the sequences appended.

    Definition Classes
    GenomicRDD
  9. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  10. def broadcast()(implicit tTag: ClassTag[T]): Broadcast[IntervalArray[ReferenceRegion, T]]

    Permalink
    Definition Classes
    GenomicRDD
  11. def broadcastRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], txTag: ClassTag[(T, X)]): GenericGenomicRDD[(T, X)]

    Permalink

    Performs a broadcast inner join between this RDD and another RDD.

    Performs a broadcast inner join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    See also

    broadcastRegionJoinAgainst

  12. def broadcastRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], txTag: ClassTag[(T, X)]): GenericGenomicRDD[(T, X)]

    Permalink

    Performs a broadcast inner join between this RDD and another RDD.

    Performs a broadcast inner join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    See also

    broadcastRegionJoinAgainst

  13. def broadcastRegionJoinAgainst[X](broadcastTree: Broadcast[IntervalArray[ReferenceRegion, X]])(implicit tTag: ClassTag[T], xTag: ClassTag[X]): GenericGenomicRDD[(X, T)]

    Permalink

    Performs a broadcast inner join between this RDD and data that has been broadcast.

    Performs a broadcast inner join between this RDD and data that has been broadcast.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcastTree

    The data on the left side of the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    Note

    This function differs from other region joins as it treats the calling RDD as the right side of the join, and not the left.

    See also

    broadcastRegionJoin

  14. def broadcastRegionJoinAgainstAndGroupByRight[X, Y <: GenomicRDD[X, Y]](broadcastTree: Broadcast[IntervalArray[ReferenceRegion, X]])(implicit tTag: ClassTag[T], xTag: ClassTag[X]): GenericGenomicRDD[(Iterable[X], T)]

    Permalink

    Performs a broadcast inner join between this RDD and another RDD.

    Performs a broadcast inner join between this RDD and another RDD.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcastTree

    The data on the left side of the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    Note

    This function differs from other region joins as it treats the calling RDD as the right side of the join, and not the left.

    See also

    broadcastRegionJoinAndGroupByRight

  15. def broadcastRegionJoinAndGroupByRight[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[T], X)]): GenericGenomicRDD[(Iterable[T], X)]

    Permalink

    Performs a broadcast inner join between this RDD and another RDD.

    Performs a broadcast inner join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  16. def broadcastRegionJoinAndGroupByRight[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[T], X)]): GenericGenomicRDD[(Iterable[T], X)]

    Permalink

    Performs a broadcast inner join between this RDD and another RDD.

    Performs a broadcast inner join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    See also

    broadcastRegionJoinAgainstAndGroupByRight

  17. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  20. def filterByOverlappingRegion(query: ReferenceRegion): V

    Permalink

    Runs a filter that selects data in the underlying RDD that overlaps a single genomic region.

    Runs a filter that selects data in the underlying RDD that overlaps a single genomic region.

    query

    The region to query for.

    returns

    Returns a new GenomicRDD containing only data that overlaps the query region.

    Definition Classes
    GenomicRDD
  21. def filterByOverlappingRegions(querys: Iterable[ReferenceRegion]): V

    Permalink

    Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    Runs a filter that selects data in the underlying RDD that overlaps several genomic regions.

    querys

    The regions to query for.

    returns

    Returns a new GenomicRDD containing only data that overlaps the querys region.

    Definition Classes
    GenomicRDD
  22. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  23. def flattenRddByRegions(): RDD[(ReferenceRegion, T)]

    Permalink
    Attributes
    protected
    Definition Classes
    GenomicRDD
  24. def fullOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], otoxTag: ClassTag[(Option[T], Option[X])]): GenericGenomicRDD[(Option[T], Option[X])]

    Permalink

    Performs a sort-merge full outer join between this RDD and another RDD.

    Performs a sort-merge full outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either RDD does not overlap any values in the other RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicRDD
  25. def fullOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], otoxTag: ClassTag[(Option[T], Option[X])]): GenericGenomicRDD[(Option[T], Option[X])]

    Permalink

    Performs a sort-merge full outer join between this RDD and another RDD.

    Performs a sort-merge full outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a full outer join, if a value from either RDD does not overlap any values in the other RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and values that did not overlap will be paired with a None.

    Definition Classes
    GenomicRDD
  26. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  27. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  28. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  29. def isSorted: Boolean

    Permalink
    Definition Classes
    GenomicRDD
  30. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  31. lazy val jrdd: JavaRDD[T]

    Permalink

    The underlying RDD of genomic data, as a JavaRDD.

    The underlying RDD of genomic data, as a JavaRDD.

    Definition Classes
    GenomicRDD
  32. def leftOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], toxTag: ClassTag[(T, Option[X])]): GenericGenomicRDD[(T, Option[X])]

    Permalink

    Performs a sort-merge left outer join between this RDD and another RDD.

    Performs a sort-merge left outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right RDD that do not overlap a value from the left RDD are dropped. If a value from the left RDD does not overlap any values in the right RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left RDD that did not overlap a key in the right RDD.

    Definition Classes
    GenomicRDD
  33. def leftOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], toxTag: ClassTag[(T, Option[X])]): GenericGenomicRDD[(T, Option[X])]

    Permalink

    Performs a sort-merge left outer join between this RDD and another RDD.

    Performs a sort-merge left outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right RDD that do not overlap a value from the left RDD are dropped. If a value from the left RDD does not overlap any values in the right RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left RDD that did not overlap a key in the right RDD.

    Definition Classes
    GenomicRDD
  34. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], toxTag: ClassTag[(T, Iterable[X])]): GenericGenomicRDD[(T, Iterable[X])]

    Permalink

    Performs a sort-merge left outer join between this RDD and another RDD, followed by a groupBy on the left value.

    Performs a sort-merge left outer join between this RDD and another RDD, followed by a groupBy on the left value.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right RDD that do not overlap a value from the left RDD are dropped. If a value from the left RDD does not overlap any values in the right RDD, it will be paired with an empty Iterable in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left RDD that did not overlap a key in the right RDD.

    Definition Classes
    GenomicRDD
  35. def leftOuterShuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], toxTag: ClassTag[(T, Iterable[X])]): GenericGenomicRDD[(T, Iterable[X])]

    Permalink

    Performs a sort-merge left outer join between this RDD and another RDD, followed by a groupBy on the left value.

    Performs a sort-merge left outer join between this RDD and another RDD, followed by a groupBy on the left value.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a left outer join, all values in the right RDD that do not overlap a value from the left RDD are dropped. If a value from the left RDD does not overlap any values in the right RDD, it will be paired with an empty Iterable in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the left RDD that did not overlap a key in the right RDD.

    Definition Classes
    GenomicRDD
  36. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  37. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  38. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  39. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  40. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  41. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  42. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  43. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  44. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  45. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  46. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  47. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  48. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  49. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  50. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  51. def pipe[X, Y <: GenomicRDD[X, Y], V <: InFormatter[T, V, V]](cmd: String, files: List[String], environment: Map[String, String], flankSize: Integer, tFormatter: Class[V], xFormatter: OutFormatter[X], convFn: Function2[V, RDD[X], Y]): Y

    Permalink

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    Java/PySpark friendly variant.

    X

    The type of the record created by the piped command.

    Y

    A GenomicRDD containing X's.

    V

    The InFormatter to use for formatting the data being piped to the command.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    tFormatter

    Class of formatter for data going into pipe command.

    xFormatter

    Formatter for data coming out of the pipe command.

    convFn

    The conversion function used to build the final RDD.

    returns

    Returns a new GenomicRDD of type Y.

    Definition Classes
    GenomicRDD
  52. def pipe[X, Y <: GenomicRDD[X, Y], V <: InFormatter[T, V, V]](cmd: String, files: Seq[Any], environment: Map[Any, Any], flankSize: Double, tFormatter: Class[V], xFormatter: OutFormatter[X], convFn: Function2[V, RDD[X], Y]): Y

    Permalink

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    SparkR friendly variant.

    X

    The type of the record created by the piped command.

    Y

    A GenomicRDD containing X's.

    V

    The InFormatter to use for formatting the data being piped to the command.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    tFormatter

    Class of formatter for data going into pipe command.

    xFormatter

    Formatter for data coming out of the pipe command.

    convFn

    The conversion function used to build the final RDD.

    returns

    Returns a new GenomicRDD of type Y.

    Definition Classes
    GenomicRDD
  53. def pipe[X, Y <: GenomicRDD[X, Y], V <: InFormatter[T, V, V]](cmd: String, files: Seq[String] = Seq.empty, environment: Map[String, String] = Map.empty, flankSize: Int = 0)(implicit tFormatterCompanion: InFormatterCompanion[T, V, V], xFormatter: OutFormatter[X], convFn: (V, RDD[X]) ⇒ Y, tManifest: ClassTag[T], xManifest: ClassTag[X]): Y

    Permalink

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    Pipes genomic data to a subprocess that runs in parallel using Spark.

    Files are substituted in to the command with a $x syntax. E.g., to invoke a command that uses the first file from the files Seq, use $0. To access the path to the directory where the files are copied, use $root.

    Pipes require the presence of an InFormatterCompanion and an OutFormatter as implicit values. The InFormatterCompanion should be a singleton whose apply method builds an InFormatter given a specific type of GenomicRDD. The implicit InFormatterCompanion yields an InFormatter which is used to format the input to the pipe, and the implicit OutFormatter is used to parse the output from the pipe.

    X

    The type of the record created by the piped command.

    Y

    A GenomicRDD containing X's.

    V

    The InFormatter to use for formatting the data being piped to the command.

    cmd

    Command to run.

    files

    Files to make locally available to the commands being run. Default is empty.

    environment

    A map containing environment variable/value pairs to set in the environment for the newly created process. Default is empty.

    flankSize

    Number of bases to flank each command invocation by.

    returns

    Returns a new GenomicRDD of type Y.

    Definition Classes
    GenomicRDD
  54. def rightOuterBroadcastRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], otxTag: ClassTag[(Option[T], X)]): GenericGenomicRDD[(Option[T], X)]

    Permalink

    Performs a broadcast right outer join between this RDD and another RDD.

    Performs a broadcast right outer join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
    See also

    rightOuterBroadcastRegionJoin

  55. def rightOuterBroadcastRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], otxTag: ClassTag[(Option[T], X)]): GenericGenomicRDD[(Option[T], X)]

    Permalink

    Performs a broadcast right outer join between this RDD and another RDD.

    Performs a broadcast right outer join between this RDD and another RDD.

    In a broadcast join, the left RDD (this RDD) is collected to the driver, and broadcast to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
    See also

    rightOuterBroadcastRegionJoin

  56. def rightOuterBroadcastRegionJoinAgainst[X](broadcastTree: Broadcast[IntervalArray[ReferenceRegion, X]])(implicit tTag: ClassTag[T], xTag: ClassTag[X]): GenericGenomicRDD[(Option[X], T)]

    Permalink

    Performs a broadcast right outer join between this RDD and data that has been broadcast.

    Performs a broadcast right outer join between this RDD and data that has been broadcast.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left table that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left table, it will be paired with a None in the product of the join. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcastTree

    The data on the left side of the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    Note

    This function differs from other region joins as it treats the calling RDD as the right side of the join, and not the left.

    See also

    rightOuterBroadcastRegionJoin

  57. def rightOuterBroadcastRegionJoinAgainstAndGroupByRight[X, Y <: GenomicRDD[X, Y]](broadcastTree: Broadcast[IntervalArray[ReferenceRegion, X]])(implicit tTag: ClassTag[T], xTag: ClassTag[X]): GenericGenomicRDD[(Iterable[X], T)]

    Permalink

    Performs a broadcast right outer join between this RDD and another RDD.

    Performs a broadcast right outer join between this RDD and another RDD.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left table that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left table, it will be paired with a None in the product of the join. As compared to broadcastRegionJoin, this function allows the broadcast object to be reused across multiple joins.

    broadcastTree

    The data on the left side of the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
    Note

    This function differs from other region joins as it treats the calling RDD as the right side of the join, and not the left.

    See also

    rightOuterBroadcastRegionJoinAndGroupByRight

  58. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[T], X)]): GenericGenomicRDD[(Iterable[T], X)]

    Permalink

    Performs a broadcast right outer join between this RDD and another RDD.

    Performs a broadcast right outer join between this RDD and another RDD.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  59. def rightOuterBroadcastRegionJoinAndGroupByRight[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], itxTag: ClassTag[(Iterable[T], X)]): GenericGenomicRDD[(Iterable[T], X)]

    Permalink

    Performs a broadcast right outer join between this RDD and another RDD.

    Performs a broadcast right outer join between this RDD and another RDD.

    In a broadcast join, the left side of the join (broadcastTree) is broadcast to to all the nodes in the cluster. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
    See also

    rightOuterBroadcastRegionJoinAgainstAndGroupByRight

  60. def rightOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], otxTag: ClassTag[(Option[T], X)]): GenericGenomicRDD[(Option[T], X)]

    Permalink

    Performs a sort-merge right outer join between this RDD and another RDD.

    Performs a sort-merge right outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
  61. def rightOuterShuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], otxTag: ClassTag[(Option[T], X)]): GenericGenomicRDD[(Option[T], X)]

    Permalink

    Performs a sort-merge right outer join between this RDD and another RDD.

    Performs a sort-merge right outer join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is a right outer join, all values in the left RDD that do not overlap a value from the right RDD are dropped. If a value from the right RDD does not overlap any values in the left RDD, it will be paired with a None in the product of the join.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, and all keys from the right RDD that did not overlap a key in the left RDD.

    Definition Classes
    GenomicRDD
  62. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], otixTag: ClassTag[(Option[T], Iterable[X])]): GenericGenomicRDD[(Option[T], Iterable[X])]

    Permalink

    Performs a sort-merge right outer join between this RDD and another RDD, followed by a groupBy on the left value, if not null.

    Performs a sort-merge right outer join between this RDD and another RDD, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the RDD. Since this is a right outer join, all values from the right RDD who did not overlap a value from the left RDD are placed into a length-1 Iterable with a None key.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left RDD, and all values from the right RDD that did not overlap an item in the left RDD.

    Definition Classes
    GenomicRDD
  63. def rightOuterShuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], otixTag: ClassTag[(Option[T], Iterable[X])]): GenericGenomicRDD[(Option[T], Iterable[X])]

    Permalink

    Performs a sort-merge right outer join between this RDD and another RDD, followed by a groupBy on the left value, if not null.

    Performs a sort-merge right outer join between this RDD and another RDD, followed by a groupBy on the left value, if not null.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. In the same operation, we group all values by the left item in the RDD. Since this is a right outer join, all values from the right RDD who did not overlap a value from the left RDD are placed into a length-1 Iterable with a None key.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left RDD, and all values from the right RDD that did not overlap an item in the left RDD.

    Definition Classes
    GenomicRDD
  64. def saveAsParquet(filePath: String): Unit

    Permalink

    Saves this RDD to disk as a Parquet file.

    Saves this RDD to disk as a Parquet file.

    filePath

    Path to save the file at.

    Definition Classes
    AvroGenomicRDD
  65. def saveAsParquet(filePath: String, blockSize: Integer, pageSize: Integer, compressCodec: CompressionCodecName, disableDictionaryEncoding: Boolean): Unit

    Permalink

    Saves this RDD to disk as a Parquet file.

    Saves this RDD to disk as a Parquet file.

    filePath

    Path to save the file at.

    blockSize

    Size per block.

    pageSize

    Size per page.

    compressCodec

    Name of the compression codec to use.

    disableDictionaryEncoding

    Whether or not to disable bit-packing.

    Definition Classes
    AvroGenomicRDD
  66. def saveAsParquet(filePath: String, blockSize: Int = 128 * 1024 * 1024, pageSize: Int = 1 * 1024 * 1024, compressCodec: CompressionCodecName = CompressionCodecName.GZIP, disableDictionaryEncoding: Boolean = false): Unit

    Permalink

    Saves this RDD to disk as a Parquet file.

    Saves this RDD to disk as a Parquet file.

    filePath

    Path to save the file at.

    blockSize

    Size per block.

    pageSize

    Size per page.

    compressCodec

    Name of the compression codec to use.

    disableDictionaryEncoding

    Whether or not to disable bit-packing. Default is false.

    Definition Classes
    AvroGenomicRDD
  67. def saveAsParquet(args: SaveArgs): Unit

    Permalink

    Saves RDD as a directory of Parquet files.

    Saves RDD as a directory of Parquet files.

    The RDD is written as a directory of Parquet files, with Parquet configuration described by the input param args. The provided sequence dictionary is written at args.outputPath/_seqdict.avro as Avro binary.

    args

    Save configuration arguments.

    Definition Classes
    AvroGenomicRDD
  68. def saveAvro[U <: SpecificRecordBase](pathName: String, sc: SparkContext, schema: Schema, avro: Seq[U])(implicit tUag: ClassTag[U]): Unit

    Permalink

    Saves Avro data to a Hadoop file system.

    Saves Avro data to a Hadoop file system.

    This method uses a SparkContext to identify our underlying file system, which we then save to.

    Frustratingly enough, although all records generated by the Avro IDL compiler have a static SCHEMA$ field, this field does not belong to the SpecificRecordBase abstract class, or the SpecificRecord interface. As such, we must force the user to pass in the schema.

    U

    The type of the specific record we are saving.

    pathName

    Path to save records to.

    sc

    SparkContext used for identifying underlying file system.

    schema

    Schema of records we are saving.

    avro

    Seq of records we are saving.

    Attributes
    protected
    Definition Classes
    ADAMRDDFunctions
  69. def saveMetadata(filePath: String): Unit

    Permalink

    Called in saveAsParquet after saving RDD to Parquet to save metadata.

    Called in saveAsParquet after saving RDD to Parquet to save metadata.

    Writes any necessary metadata to disk. If not overridden, writes the sequence dictionary to disk as Avro.

    filePath

    The filepath to the file where we will save the Metadata.

    Attributes
    protected
    Definition Classes
    AvroRecordGroupGenomicRDDAvroGenomicRDD
  70. def savePartitionMap(filePath: String): Unit

    Permalink

    Save the partition map to disk.

    Save the partition map to disk. This is done by adding the partition map to the schema.

    filePath

    The filepath where we will save the partition map.

    Attributes
    protected
    Definition Classes
    AvroGenomicRDD
  71. def saveProcessingSteps(filePath: String): Unit

    Permalink

    Save the processing steps to disk.

    Save the processing steps to disk.

    filePath

    The filepath to the directory within which we will save the processing step descriptions..

    Attributes
    protected
  72. def saveRddAsParquet(pathName: String, blockSize: Int = 128 * 1024 * 1024, pageSize: Int = 1 * 1024 * 1024, compressCodec: CompressionCodecName = CompressionCodecName.GZIP, disableDictionaryEncoding: Boolean = false, optSchema: Option[Schema] = None): Unit

    Permalink

    Saves an RDD of Avro data to Parquet.

    Saves an RDD of Avro data to Parquet.

    pathName

    The path to save the file to.

    blockSize

    The size in bytes of blocks to write. Defaults to 128 * 1024 * 1024.

    pageSize

    The size in bytes of pages to write. Defaults to 1 * 1024 * 1024.

    compressCodec

    The compression codec to apply to pages. Defaults to CompressionCodecName.GZIP.

    disableDictionaryEncoding

    If false, dictionary encoding is used. If true, delta encoding is used. Defaults to false.

    optSchema

    The optional schema to set. Defaults to None.

    Attributes
    protected
    Definition Classes
    ADAMRDDFunctions
  73. def saveRddAsParquet(args: SaveArgs): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    ADAMRDDFunctions
  74. def saveRecordGroups(filePath: String): Unit

    Permalink

    Save the record groups to disk.

    Save the record groups to disk.

    filePath

    The filepath to the file where we will save the record groups.

    Attributes
    protected
  75. def saveSequences(filePath: String): Unit

    Permalink

    Save the sequence dictionary to disk.

    Save the sequence dictionary to disk.

    filePath

    The filepath where we will save the sequence dictionary.

    Attributes
    protected
    Definition Classes
    AvroGenomicRDD
  76. def shuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], txTag: ClassTag[(T, X)]): GenericGenomicRDD[(T, X)]

    Permalink

    Performs a sort-merge inner join between this RDD and another RDD.

    Performs a sort-merge inner join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
  77. def shuffleRegionJoin[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], txTag: ClassTag[(T, X)]): GenericGenomicRDD[(T, X)]

    Permalink

    Performs a sort-merge inner join between this RDD and another RDD.

    Performs a sort-merge inner join between this RDD and another RDD.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space.

    Definition Classes
    GenomicRDD
  78. def shuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y])(implicit tTag: ClassTag[T], xTag: ClassTag[X], tixTag: ClassTag[(T, Iterable[X])]): GenericGenomicRDD[(T, Iterable[X])]

    Permalink

    Performs a sort-merge inner join between this RDD and another RDD, followed by a groupBy on the left value.

    Performs a sort-merge inner join between this RDD and another RDD, followed by a groupBy on the left value.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped. In the same operation, we group all values by the left item in the RDD.

    genomicRdd

    The right RDD in the join.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left RDD..

    Definition Classes
    GenomicRDD
  79. def shuffleRegionJoinAndGroupByLeft[X, Y <: GenomicRDD[X, Y]](genomicRdd: GenomicRDD[X, Y], flankSize: Long)(implicit tTag: ClassTag[T], xTag: ClassTag[X], tixTag: ClassTag[(T, Iterable[X])]): GenericGenomicRDD[(T, Iterable[X])]

    Permalink

    Performs a sort-merge inner join between this RDD and another RDD, followed by a groupBy on the left value.

    Performs a sort-merge inner join between this RDD and another RDD, followed by a groupBy on the left value.

    In a sort-merge join, both RDDs are co-partitioned and sorted. The partitions are then zipped, and we do a merge join on each partition. The key equality function used for this join is the reference region overlap function. Since this is an inner join, all values who do not overlap a value from the other RDD are dropped. In the same operation, we group all values by the left item in the RDD.

    genomicRdd

    The right RDD in the join.

    flankSize

    Sets a flankSize for the distance between elements to be joined. If set to 0, an overlap is required to join two elements.

    returns

    Returns a new genomic RDD containing all pairs of keys that overlapped in the genomic coordinate space, grouped together by the value they overlapped in the left RDD..

    Definition Classes
    GenomicRDD
  80. def sort(partitions: Int = rdd.partitions.length, stringency: ValidationStringency = ValidationStringency.STRICT)(implicit tTag: ClassTag[T]): V

    Permalink

    Sorts our genome aligned data by reference positions, with contigs ordered by index.

    Sorts our genome aligned data by reference positions, with contigs ordered by index.

    partitions

    The number of partitions for the new RDD.

    stringency

    The level of ValidationStringency to enforce.

    returns

    Returns a new RDD containing sorted data.

    Definition Classes
    GenomicRDD
    Note

    Uses ValidationStringency to handle unaligned or where objects align to multiple positions.

    See also

    sortLexicographically

  81. def sort(): V

    Permalink

    Sorts our genome aligned data by reference positions, with contigs ordered by index.

    Sorts our genome aligned data by reference positions, with contigs ordered by index.

    returns

    Returns a new RDD containing sorted data.

    Definition Classes
    GenomicRDD
    See also

    sortLexicographically

  82. def sortLexicographically(partitions: Int = rdd.partitions.length, storePartitionMap: Boolean = false, storageLevel: StorageLevel = StorageLevel.MEMORY_ONLY, stringency: ValidationStringency = ValidationStringency.STRICT)(implicit tTag: ClassTag[T]): V

    Permalink

    Sorts our genome aligned data by reference positions, with contigs ordered lexicographically.

    Sorts our genome aligned data by reference positions, with contigs ordered lexicographically.

    partitions

    The number of partitions for the new RDD.

    storePartitionMap

    A Boolean flag to determine whether to store the partition bounds from the resulting RDD.

    storageLevel

    The level at which to persist the resulting RDD.

    stringency

    The level of ValidationStringency to enforce.

    returns

    Returns a new RDD containing sorted data.

    Definition Classes
    GenomicRDD
    Note

    Uses ValidationStringency to handle data that is unaligned or where objects align to multiple positions.

    See also

    sort

  83. def sortLexicographically(): V

    Permalink

    Sorts our genome aligned data by reference positions, with contigs ordered lexicographically.

    Sorts our genome aligned data by reference positions, with contigs ordered lexicographically.

    returns

    Returns a new RDD containing sorted data.

    Definition Classes
    GenomicRDD
    See also

    sort

  84. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  85. def toDF(): DataFrame

    Permalink

    returns

    This data as a Spark SQL DataFrame.

    Definition Classes
    GenomicDataset
  86. def toString(): String

    Permalink
    Definition Classes
    AvroRecordGroupGenomicRDDGenomicRDD → AnyRef → Any
  87. def transform(tFn: Function[JavaRDD[T], JavaRDD[T]]): V

    Permalink

    Applies a function that transforms the underlying RDD into a new RDD.

    Applies a function that transforms the underlying RDD into a new RDD.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicRDD
  88. def transform(tFn: (RDD[T]) ⇒ RDD[T]): V

    Permalink

    Applies a function that transforms the underlying RDD into a new RDD.

    Applies a function that transforms the underlying RDD into a new RDD.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicRDD
  89. def transformDataFrame(tFn: Function[DataFrame, DataFrame]): V

    Permalink

    Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API. Java-friendly variant.

    tFn

    A function that transforms the underlying RDD as a DataFrame.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  90. def transformDataFrame(tFn: (DataFrame) ⇒ DataFrame)(implicit uTag: scala.reflect.api.JavaUniverse.TypeTag[U]): V

    Permalink

    Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    Applies a function that transforms the underlying DataFrame into a new DataFrame using the Spark SQL API.

    tFn

    A function that transforms the underlying RDD as a DataFrame.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  91. def transmute[X, Y <: GenomicRDD[X, Y]](tFn: Function[JavaRDD[T], JavaRDD[X]], convFn: Function2[V, RDD[X], Y]): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type. Java friendly version.

    tFn

    A function that transforms the underlying RDD.

    convFn

    The conversion function used to build the final RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicRDD
  92. def transmute[X, Y <: GenomicRDD[X, Y]](tFn: (RDD[T]) ⇒ RDD[X])(implicit convFn: (V, RDD[X]) ⇒ Y): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicRDD
  93. def transmuteDataFrame[X <: Product, Y <: GenomicDataset[_, X, Y]](tFn: Function[DataFrame, DataFrame], convFn: GenomicDatasetConversion[U, V, X, Y]): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type. Java friendly variant.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  94. def transmuteDataFrame[X <: Product, Y <: GenomicDataset[_, X, Y]](tFn: (DataFrame) ⇒ DataFrame)(implicit xTag: scala.reflect.api.JavaUniverse.TypeTag[X], convFn: (V, Dataset[X]) ⇒ Y): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type. Java friendly variant.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  95. def transmuteDataset[X <: Product, Y <: GenomicDataset[_, X, Y]](tFn: Function[Dataset[U], Dataset[X]], convFn: GenomicDatasetConversion[U, V, X, Y]): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type. Java friendly variant.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  96. def transmuteDataset[X <: Product, Y <: GenomicDataset[_, X, Y]](tFn: (Dataset[U]) ⇒ Dataset[X])(implicit xTag: scala.reflect.api.JavaUniverse.TypeTag[X], convFn: (V, Dataset[X]) ⇒ Y): Y

    Permalink

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    Applies a function that transmutes the underlying RDD into a new RDD of a different type.

    tFn

    A function that transforms the underlying RDD.

    returns

    A new RDD where the RDD of genomic data has been replaced, but the metadata (sequence dictionary, and etc) is copied without modification.

    Definition Classes
    GenomicDataset
  97. def union(rdds: List[V]): V

    Permalink

    Unions together multiple genomic RDDs.

    Unions together multiple genomic RDDs.

    rdds

    RDDs to union with this RDD.

    Definition Classes
    GenomicRDD
  98. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  99. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  100. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  101. def writeTextRdd[T](rdd: RDD[T], outputPath: String, asSingleFile: Boolean, disableFastConcat: Boolean, optHeaderPath: Option[String] = None): Unit

    Permalink

    Writes an RDD to disk as text and optionally merges.

    Writes an RDD to disk as text and optionally merges.

    rdd

    RDD to save.

    outputPath

    Output path to save text files to.

    asSingleFile

    If true, combines all partition shards.

    disableFastConcat

    If asSingleFile is true, disables the use of the parallel file merging engine.

    optHeaderPath

    If provided, the header file to include.

    Attributes
    protected
    Definition Classes
    GenomicRDD

Inherited from GenomicRDDWithLineage[T, V]

Inherited from AvroGenomicRDD[T, U, V]

Inherited from GenomicDataset[T, U, V]

Inherited from GenomicRDD[T, V]

Inherited from ADAMRDDFunctions[T]

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped