Uses of Class
org.deeplearning4j.nn.api.Layer.TrainingMode
-
Packages that use Layer.TrainingMode Package Description org.deeplearning4j.nn.api org.deeplearning4j.nn.layers org.deeplearning4j.nn.layers.normalization org.deeplearning4j.nn.multilayer -
-
Uses of Layer.TrainingMode in org.deeplearning4j.nn.api
Methods in org.deeplearning4j.nn.api that return Layer.TrainingMode Modifier and Type Method Description static Layer.TrainingMode
Layer.TrainingMode. valueOf(String name)
Returns the enum constant of this type with the specified name.static Layer.TrainingMode[]
Layer.TrainingMode. values()
Returns an array containing the constants of this enum type, in the order they are declared. -
Uses of Layer.TrainingMode in org.deeplearning4j.nn.layers
Methods in org.deeplearning4j.nn.layers with parameters of type Layer.TrainingMode Modifier and Type Method Description void
FrozenLayer. logTestMode(Layer.TrainingMode training)
void
FrozenLayerWithBackprop. logTestMode(Layer.TrainingMode training)
-
Uses of Layer.TrainingMode in org.deeplearning4j.nn.layers.normalization
Methods in org.deeplearning4j.nn.layers.normalization with parameters of type Layer.TrainingMode Modifier and Type Method Description INDArray
BatchNormalization. preOutput(INDArray x, Layer.TrainingMode training, LayerWorkspaceMgr workspaceMgr)
-
Uses of Layer.TrainingMode in org.deeplearning4j.nn.multilayer
Methods in org.deeplearning4j.nn.multilayer with parameters of type Layer.TrainingMode Modifier and Type Method Description INDArray
MultiLayerNetwork. activate(Layer.TrainingMode training)
Equivalent toMultiLayerNetwork.output(INDArray)
using the input set viaMultiLayerNetwork.setInput(INDArray)
INDArray
MultiLayerNetwork. activate(INDArray input, Layer.TrainingMode training)
Equivalent toMultiLayerNetwork.output(INDArray, TrainingMode)
INDArray
MultiLayerNetwork. output(INDArray input, Layer.TrainingMode train)
Perform inference on the provided input/features - i.e., perform forward pass using the provided input/features and return the output of the final layer.
-