Uses of Class
org.deeplearning4j.nn.conf.distribution.Distribution
-
-
Uses of Distribution in org.deeplearning4j.nn.conf
Methods in org.deeplearning4j.nn.conf with parameters of type Distribution Modifier and Type Method Description NeuralNetConfiguration.Builder
NeuralNetConfiguration.Builder. dist(Distribution dist)
Deprecated.NeuralNetConfiguration.Builder
NeuralNetConfiguration.Builder. weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution. -
Uses of Distribution in org.deeplearning4j.nn.conf.distribution
Subclasses of Distribution in org.deeplearning4j.nn.conf.distribution Modifier and Type Class Description class
BinomialDistribution
class
ConstantDistribution
class
GaussianDistribution
Deprecated.class
LogNormalDistribution
A log-normal distribution, with two parameters: mean and standard deviation.class
NormalDistribution
A normal (Gaussian) distribution, with two parameters: mean and standard deviationclass
OrthogonalDistribution
Orthogonal distribution, with gain parameter.
See https://arxiv.org/abs/1312.6120 for detailsclass
TruncatedNormalDistribution
class
UniformDistribution
A uniform distribution, with two parameters: lower and upper - i.e., U(lower,upper)Methods in org.deeplearning4j.nn.conf.distribution that return Distribution Modifier and Type Method Description Distribution
Distribution. clone()
Methods in org.deeplearning4j.nn.conf.distribution with parameters of type Distribution Modifier and Type Method Description static Distribution
Distributions. createDistribution(Distribution dist)
-
Uses of Distribution in org.deeplearning4j.nn.conf.distribution.serde
Subclasses of Distribution in org.deeplearning4j.nn.conf.distribution.serde Modifier and Type Class Description class
LegacyDistributionHelper
Methods in org.deeplearning4j.nn.conf.distribution.serde that return Distribution Modifier and Type Method Description Distribution
LegacyDistributionDeserializer. deserialize(org.nd4j.shade.jackson.core.JsonParser jp, org.nd4j.shade.jackson.databind.DeserializationContext deserializationContext)
-
Uses of Distribution in org.deeplearning4j.nn.conf.layers
Methods in org.deeplearning4j.nn.conf.layers with parameters of type Distribution Modifier and Type Method Description T
BaseLayer.Builder. dist(Distribution dist)
Deprecated.T
BaseLayer.Builder. weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution.T
BaseRecurrentLayer.Builder. weightInitRecurrent(Distribution dist)
Set the weight initialization for the recurrent weights, based on the specified distribution. -
Uses of Distribution in org.deeplearning4j.nn.conf.weightnoise
Constructors in org.deeplearning4j.nn.conf.weightnoise with parameters of type Distribution Constructor Description WeightNoise(Distribution distribution)
WeightNoise(Distribution distribution, boolean additive)
WeightNoise(Distribution distribution, boolean applyToBias, boolean additive)
-
Uses of Distribution in org.deeplearning4j.nn.transferlearning
Methods in org.deeplearning4j.nn.transferlearning with parameters of type Distribution Modifier and Type Method Description FineTuneConfiguration.Builder
FineTuneConfiguration.Builder. dist(Distribution dist)
Deprecated.TransferLearning.Builder
TransferLearning.Builder. nInReplace(int layerNum, int nIn, WeightInit scheme, Distribution dist)
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. nInReplace(String layerName, int nIn, WeightInit scheme, Distribution dist)
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.TransferLearning.Builder
TransferLearning.Builder. nOutReplace(int layerNum, int nOut, Distribution dist)
Modify the architecture of a layer by changing nOut Note this will also affect the layer that follows the layer specified, unless it is the output layerTransferLearning.Builder
TransferLearning.Builder. nOutReplace(int layerNum, int nOut, Distribution dist, Distribution distNext)
Modify the architecture of a layer by changing nOut Note this will also affect the layer that follows the layer specified, unless it is the output layer Can specify different weight init schemes for the specified layer and the layer that follows it.TransferLearning.Builder
TransferLearning.Builder. nOutReplace(int layerNum, int nOut, Distribution dist, WeightInit schemeNext)
Modify the architecture of a layer by changing nOut Note this will also affect the layer that follows the layer specified, unless it is the output layer Can specify different weight init schemes for the specified layer and the layer that follows it.TransferLearning.Builder
TransferLearning.Builder. nOutReplace(int layerNum, int nOut, WeightInit scheme, Distribution distNext)
Modify the architecture of a layer by changing nOut Note this will also affect the layer that follows the layer specified, unless it is the output layer Can specify different weight init schemes for the specified layer and the layer that follows it.TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. nOutReplace(String layerName, int nOut, Distribution dist)
Modify the architecture of a vertex layer by changing nOut Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc To modify nOut for such vertices use remove vertex, followed by add vertex Can specify different weight init schemes for the specified layer and the layer that follows it.TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. nOutReplace(String layerName, int nOut, Distribution dist, Distribution distNext)
Modified nOut of specified layer.TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. nOutReplace(String layerName, int nOut, Distribution dist, WeightInit scheme)
TransferLearning.GraphBuilder
TransferLearning.GraphBuilder. nOutReplace(String layerName, int nOut, WeightInit scheme, Distribution dist)
FineTuneConfiguration.Builder
FineTuneConfiguration.Builder. weightInit(Distribution distribution)
Set weight initialization scheme to random sampling via the specified distribution. -
Uses of Distribution in org.deeplearning4j.nn.weights
Methods in org.deeplearning4j.nn.weights with parameters of type Distribution Modifier and Type Method Description IWeightInit
WeightInit. getWeightInitFunction(Distribution distribution)
Create an instance of the weight initialization functionConstructors in org.deeplearning4j.nn.weights with parameters of type Distribution Constructor Description WeightInitDistribution(Distribution distribution)
-