Class RecurrentAttentionLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- All Implemented Interfaces:
Serializable
,Cloneable
,TrainingConfig
public class RecurrentAttentionLayer extends SameDiffLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
RecurrentAttentionLayer.Builder
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
paramWeightInit, weightInit
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
biasUpdater, gradientNormalization, gradientNormalizationThreshold, regularization, regularizationBias, updater
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
RecurrentAttentionLayer(RecurrentAttentionLayer.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)
SDVariable
defineLayer(SameDiff sameDiff, SDVariable layerInput, Map<String,SDVariable> paramTable, SDVariable mask)
Define the layervoid
defineParameters(SDLayerParams params)
Define the parameters for the network.InputType
getOutputType(int layerIndex, InputType inputType)
For a given type of input to this layer, what is the type of the output?InputPreProcessor
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessor
for this layer, such as aCnnToFeedForwardPreProcessor
void
initializeParameters(Map<String,INDArray> params)
Set the initial parameter values for this layer, if requiredvoid
setNIn(InputType inputType, boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input typevoid
validateInput(INDArray input)
Validate input arrays to confirm that they fulfill the assumptions of the layer.-
Methods inherited from class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
feedForwardMaskArray, instantiate
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
applyGlobalConfig, getLayerParams, getMemoryReport, getRegularizationByParam, getUpdaterByParam, initializer, initWeights, isPretrainParam, onesMaskForInput, paramReshapeOrder
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getGradientNormalization, getGradientNormalizationThreshold, getLayerName
-
-
-
-
Constructor Detail
-
RecurrentAttentionLayer
protected RecurrentAttentionLayer(RecurrentAttentionLayer.Builder builder)
-
-
Method Detail
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:Layer
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessor
for this layer, such as aCnnToFeedForwardPreProcessor
- Overrides:
getPreProcessorForInputType
in classAbstractSameDiffLayer
- Parameters:
inputType
- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:Layer
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type- Overrides:
setNIn
in classAbstractSameDiffLayer
- Parameters:
inputType
- Input type for this layeroverride
- If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's already set or not.
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:Layer
For a given type of input to this layer, what is the type of the output?- Specified by:
getOutputType
in classLayer
- Parameters:
layerIndex
- Index of the layerinputType
- Type of input for the layer- Returns:
- Type of output from the layer
-
defineParameters
public void defineParameters(SDLayerParams params)
Description copied from class:AbstractSameDiffLayer
Define the parameters for the network. UseSDLayerParams.addWeightParam(String, long...)
andSDLayerParams.addBiasParam(String, long...)
- Specified by:
defineParameters
in classAbstractSameDiffLayer
- Parameters:
params
- Object used to set parameters for this layer
-
initializeParameters
public void initializeParameters(Map<String,INDArray> params)
Description copied from class:AbstractSameDiffLayer
Set the initial parameter values for this layer, if required- Specified by:
initializeParameters
in classAbstractSameDiffLayer
- Parameters:
params
- Parameter arrays that may be initialized
-
applyGlobalConfigToLayer
public void applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)
- Overrides:
applyGlobalConfigToLayer
in classAbstractSameDiffLayer
-
validateInput
public void validateInput(INDArray input)
Description copied from class:SameDiffLayer
Validate input arrays to confirm that they fulfill the assumptions of the layer. If they don't, throw an exception.- Overrides:
validateInput
in classSameDiffLayer
- Parameters:
input
- input to the layer
-
defineLayer
public SDVariable defineLayer(SameDiff sameDiff, SDVariable layerInput, Map<String,SDVariable> paramTable, SDVariable mask)
Description copied from class:SameDiffLayer
Define the layer- Specified by:
defineLayer
in classSameDiffLayer
- Parameters:
sameDiff
- SameDiff instancelayerInput
- Input to the layerparamTable
- Parameter table - keys as defined byAbstractSameDiffLayer.defineParameters(SDLayerParams)
mask
- Optional, maybe null. Mask to apply if supported- Returns:
- The final layer variable corresponding to the activations/output from the forward pass
-
-