Class RecurrentAttentionLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
public class RecurrentAttentionLayer extends SameDiffLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classRecurrentAttentionLayer.Builder
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
paramWeightInit, weightInit
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
biasUpdater, gradientNormalization, gradientNormalizationThreshold, regularization, regularizationBias, updater
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedRecurrentAttentionLayer(RecurrentAttentionLayer.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidapplyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)SDVariabledefineLayer(SameDiff sameDiff, SDVariable layerInput, Map<String,SDVariable> paramTable, SDVariable mask)Define the layervoiddefineParameters(SDLayerParams params)Define the parameters for the network.InputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorvoidinitializeParameters(Map<String,INDArray> params)Set the initial parameter values for this layer, if requiredvoidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input typevoidvalidateInput(INDArray input)Validate input arrays to confirm that they fulfill the assumptions of the layer.-
Methods inherited from class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
feedForwardMaskArray, instantiate
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
applyGlobalConfig, getLayerParams, getMemoryReport, getRegularizationByParam, getUpdaterByParam, initializer, initWeights, isPretrainParam, onesMaskForInput, paramReshapeOrder
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getGradientNormalization, getGradientNormalizationThreshold, getLayerName
-
-
-
-
Constructor Detail
-
RecurrentAttentionLayer
protected RecurrentAttentionLayer(RecurrentAttentionLayer.Builder builder)
-
-
Method Detail
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Overrides:
getPreProcessorForInputTypein classAbstractSameDiffLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type- Overrides:
setNInin classAbstractSameDiffLayer- Parameters:
inputType- Input type for this layeroverride- If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's already set or not.
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Specified by:
getOutputTypein classLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
defineParameters
public void defineParameters(SDLayerParams params)
Description copied from class:AbstractSameDiffLayerDefine the parameters for the network. UseSDLayerParams.addWeightParam(String, long...)andSDLayerParams.addBiasParam(String, long...)- Specified by:
defineParametersin classAbstractSameDiffLayer- Parameters:
params- Object used to set parameters for this layer
-
initializeParameters
public void initializeParameters(Map<String,INDArray> params)
Description copied from class:AbstractSameDiffLayerSet the initial parameter values for this layer, if required- Specified by:
initializeParametersin classAbstractSameDiffLayer- Parameters:
params- Parameter arrays that may be initialized
-
applyGlobalConfigToLayer
public void applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)
- Overrides:
applyGlobalConfigToLayerin classAbstractSameDiffLayer
-
validateInput
public void validateInput(INDArray input)
Description copied from class:SameDiffLayerValidate input arrays to confirm that they fulfill the assumptions of the layer. If they don't, throw an exception.- Overrides:
validateInputin classSameDiffLayer- Parameters:
input- input to the layer
-
defineLayer
public SDVariable defineLayer(SameDiff sameDiff, SDVariable layerInput, Map<String,SDVariable> paramTable, SDVariable mask)
Description copied from class:SameDiffLayerDefine the layer- Specified by:
defineLayerin classSameDiffLayer- Parameters:
sameDiff- SameDiff instancelayerInput- Input to the layerparamTable- Parameter table - keys as defined byAbstractSameDiffLayer.defineParameters(SDLayerParams)mask- Optional, maybe null. Mask to apply if supported- Returns:
- The final layer variable corresponding to the activations/output from the forward pass
-
-