Class ConvolutionLayer
- java.lang.Object
-
- org.deeplearning4j.nn.layers.AbstractLayer<LayerConfT>
-
- org.deeplearning4j.nn.layers.BaseLayer<ConvolutionLayer>
-
- org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,Layer,Model,Trainable
- Direct Known Subclasses:
Convolution1DLayer,Convolution3DLayer,Deconvolution2DLayer,DepthwiseConvolution2DLayer,SeparableConvolution2DLayer
public class ConvolutionLayer extends BaseLayer<ConvolutionLayer>
- See Also:
- Serialized Form
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface org.deeplearning4j.nn.api.Layer
Layer.TrainingMode, Layer.Type
-
-
Field Summary
Fields Modifier and Type Field Description protected ConvolutionModeconvolutionModestatic StringCUDA_CNN_HELPER_CLASS_NAMEprotected INDArraydummyBiasprotected INDArraydummyBiasGradprotected ConvolutionHelperhelperprotected inthelperCountFailprotected INDArrayi2d-
Fields inherited from class org.deeplearning4j.nn.layers.BaseLayer
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
-
Fields inherited from class org.deeplearning4j.nn.layers.AbstractLayer
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
-
-
Constructor Summary
Constructors Constructor Description ConvolutionLayer(NeuralNetConfiguration conf, DataType dataType)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description INDArrayactivate(boolean training, LayerWorkspaceMgr workspaceMgr)Perform forward pass and return the activations array with the last set inputPair<Gradient,INDArray>backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Calculate the gradient relative to the error in the next layerPair<INDArray,MaskState>feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize)Feed forward the input mask array, setting in the layer as appropriate.voidfit(INDArray input, LayerWorkspaceMgr workspaceMgr)Fit the model to the given dataLayerHelpergetHelper()booleanhasBias()Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by default, but no-bias versions are possible via configurationbooleanisPretrainLayer()Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)protected Pair<INDArray,INDArray>preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used instead of being calculated again.protected Pair<INDArray,INDArray>preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying the public APIvoidsetParams(INDArray params)Set the parameters for this model.Layer.Typetype()Returns the layer typeprotected voidvalidateInputDepth(long inDepth)protected voidvalidateInputRank()-
Methods inherited from class org.deeplearning4j.nn.layers.BaseLayer
calcRegularizationScore, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
-
Methods inherited from class org.deeplearning4j.nn.layers.AbstractLayer
activate, addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, getConfig, getEpochCount, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, updaterDivideByMinibatch
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.Layer
getIterationCount, setIterationCount
-
-
-
-
Field Detail
-
i2d
protected INDArray i2d
-
helper
protected ConvolutionHelper helper
-
helperCountFail
protected int helperCountFail
-
convolutionMode
protected ConvolutionMode convolutionMode
-
dummyBias
protected transient INDArray dummyBias
-
dummyBiasGrad
protected transient INDArray dummyBiasGrad
-
CUDA_CNN_HELPER_CLASS_NAME
public static final String CUDA_CNN_HELPER_CLASS_NAME
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
ConvolutionLayer
public ConvolutionLayer(NeuralNetConfiguration conf, DataType dataType)
-
-
Method Detail
-
type
public Layer.Type type()
Description copied from interface:LayerReturns the layer type- Specified by:
typein interfaceLayer- Overrides:
typein classAbstractLayer<ConvolutionLayer>- Returns:
-
backpropGradient
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:LayerCalculate the gradient relative to the error in the next layer- Specified by:
backpropGradientin interfaceLayer- Overrides:
backpropGradientin classBaseLayer<ConvolutionLayer>- Parameters:
epsilon- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C is cost function a=sigma(z) is activation.workspaceMgr- Workspace manager- Returns:
- Pair
where Gradient is gradient for this layer, INDArray is epsilon (activation gradient) needed by next layer, but before element-wise multiply by sigmaPrime(z). So for standard feed-forward layer, if this layer is L, then return.getSecond() == dL/dIn = (w^(L)*(delta^(L))^T)^T. Note that the returned array should be placed in the ArrayType.ACTIVATION_GRADworkspace via the workspace manager
-
preOutput4d
protected Pair<INDArray,INDArray> preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying the public API
-
validateInputRank
protected void validateInputRank()
-
validateInputDepth
protected void validateInputDepth(long inDepth)
-
preOutput
protected Pair<INDArray,INDArray> preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used instead of being calculated again.- Parameters:
training- Train or test time (impacts dropout)forBackprop- If true: return the im2col2d array for re-use during backprop. False: return null for second pair entry. Note that it may still be null in the case of CuDNN and the like.- Returns:
- Pair of arrays: preOutput (activations) and optionally the im2col2d array
-
activate
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:LayerPerform forward pass and return the activations array with the last set input- Specified by:
activatein interfaceLayer- Overrides:
activatein classBaseLayer<ConvolutionLayer>- Parameters:
training- training or test modeworkspaceMgr- Workspace manager- Returns:
- the activation (layer output) of the last specified input. Note that the returned array should be placed
in the
ArrayType.ACTIVATIONSworkspace via the workspace manager
-
hasBias
public boolean hasBias()
Description copied from class:BaseLayerDoes this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by default, but no-bias versions are possible via configuration- Overrides:
hasBiasin classBaseLayer<ConvolutionLayer>- Returns:
- True if a bias term is present, false otherwise
-
isPretrainLayer
public boolean isPretrainLayer()
Description copied from interface:LayerReturns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)- Returns:
- true if the layer can be pretrained (using fit(INDArray), false otherwise
-
getHelper
public LayerHelper getHelper()
- Specified by:
getHelperin interfaceLayer- Overrides:
getHelperin classAbstractLayer<ConvolutionLayer>- Returns:
- Get the layer helper, if any
-
fit
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:ModelFit the model to the given data- Specified by:
fitin interfaceModel- Overrides:
fitin classBaseLayer<ConvolutionLayer>- Parameters:
input- the data to fit the model to
-
setParams
public void setParams(INDArray params)
Description copied from interface:ModelSet the parameters for this model. This expects a linear ndarray which then be unpacked internally relative to the expected ordering of the model- Specified by:
setParamsin interfaceModel- Overrides:
setParamsin classBaseLayer<ConvolutionLayer>- Parameters:
params- the parameters for the model
-
feedForwardMaskArray
public Pair<INDArray,MaskState> feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize)
Description copied from interface:LayerFeed forward the input mask array, setting in the layer as appropriate. This allows different layers to handle masks differently - for example, bidirectional RNNs and normal RNNs operate differently with masks (the former sets activations to 0 outside of the data present region (and keeps the mask active for future layers like dense layers), whereas normal RNNs don't zero out the activations/errors )instead relying on backpropagated error arrays to handle the variable length case.
This is also used for example for networks that contain global pooling layers, arbitrary preprocessors, etc.- Specified by:
feedForwardMaskArrayin interfaceLayer- Overrides:
feedForwardMaskArrayin classAbstractLayer<ConvolutionLayer>- Parameters:
maskArray- Mask array to setcurrentMaskState- Current state of the mask - seeMaskStateminibatchSize- Current minibatch size. Needs to be known as it cannot always be inferred from the activations array due to reshaping (such as a DenseLayer within a recurrent neural network)- Returns:
- New mask array after this layer, along with the new mask state.
-
-